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An Effective Feature Extraction Method for Fault
Diagnosis of Induction Motors
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Abstract

This paper proposes an effective technique that is used to automatically extract feature vectors
from vibration signals for fault classification systems. Conventional mel-frequency cepstral
coefficients (MFCCs) are sensitive to noise of vibration signals, degrading classification accuracy.
To solve this problem, this paper proposes spectral envelope cepstral coefficients (SECC) analysis,

where a 4-step filter bank based on spectral envelopes of vibration signals is used: (1) a linear
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predictive coding (LPC) algorithm is used to specify spectral envelopes of all faulty vibration

signals, (2) all envelopes are averaged to get general spectral shape, (3) a gradient descent

method is used to find extremes of the average envelope and its frequencies, (4) a non-overlapped

filter is used to have centers calculated from distances between valley frequencies of the envelope.

This 4-step filter bank is then used in cepstral coefficients computation to extract feature vectors.

Finally, a multi-layer support vector machine (MLSVM) with various sigma values uses these

special parameters to identify faulty types of induction motors. Experimental results indicate that

the proposed extraction method outperforms other feature extraction algorithms, yielding more

than about 99.65% of classification accuracy.

» Keywords : fault classification, feature extraction, cepstral coefficients, support vector

machines

. M2

Induction motors are essential components in
many industrial processes which deal with moving
and lifting  products. However, unexpected
machinery failure results in loss of production, high
emergency maintenance costs, and expected process
downtime (1]. Thus, early fault diagnosis techniques
can increase the safety of motor operations, reduce
emergency maintenance costs, and minimize
downtime (1-3].

The key challenge of the fault detection and
classification system of induction motors is the
improvement of diagnostic accuracy based on a given
amount of information which is usually contaminated
by white or colored noise in industrial environments.
Many researchers have mainly utilized current and
voltage as system inputs of the fault detection system
because they are easy to measure. In spite of having
non-stationary and non-deterministic characteristics,
vibration signals are also widely used for fault
diagnosis systems because vibration signals often
Thus,

vibration monitoring is the most reliable and effective

direct link to the status of machines [4).

method to detect whether the machinery system is
healthy or not (5].

Generally, there are two main steps in a typical
fault diagnosis system: (1) features generation
which encodes the classification information in a
more compact way compared with original acquired
signals and (2) pattern classification based on the
feature vectors obtained from the first step. Feature
extraction is an important step in designing any
kinds of classification systems because classification
accuracy highly depends on the features which are
used as an input of a classifier. In addition,
selecting the proper number of features is important
because it help to avoid overfitting to the specific
training dataset and design classifiers.

Vibration signals have been analyzed in time
both  the

time—frequency domain to generate feature vectors

domain, frequency domain, or
(6-9). Many researchers extracted the statistical
values (e.g., mean, variance, root-mean-square, and
kurtosis) or spectral power coefficients from the time
and frequency analysis (6, 8, 9). These features
were well-suited for most mechanical systems. For
short-time Fourier transform (STFT),
(DWT),  and

mel-frequency cepstral coefficients (MFCCs) were

instance,

discrete wavelet transform
often used to extract the spectral coefficients (6, 8,
10-12). Yang et al. (13, 14) utilized aforementioned
features which were extracted from both time and

frequency domain for rotating machinery and
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cavitations of a butterfly valve.

In the feature-based diagnostic process, a huge
dimensionality problem of features can possibly
occur after feature extraction. This cannot be
avoided because all of the features are not useful in
the classification task. The existence of irrelevant
features tends to degrade the performance of the
classifier. To reduce or select an optimal number of
features, several methods have been introduced,
such as principal component analysis (PCA) [15],
independence component analysis (ICA) (16), and
singular values decompositions (23)].

There are two main classifier models for fault
classification: analytical model based methods and
artificial intelligence (AI) based methods (e.g.,
knowledge based models and data based models)
(17-19). Although analytical and knowledge-based
models are effective for fault classification, they
provide poor classification performance of induction
motors because of lacking adaptability and the
(19). Thus,
have been used for fault

classification of induction motors, such as neural

random nature of vibration signals
Data-based models
networks, fuzzy systems, and support vector
machines (SVM). In this paper, we employ SVM as
due to the
performance when the number of training samples is
limited. In addition,

deviation (0) values of the Gaussian radial basic

a classifier highest generalization

we utilize the standard

kernel function of SVM because they supports a
strong effect on the classification accuracy, which in
turn affects system performance (20).

For feature extraction, MFCCs have been widely
used (6. 8, 10-12], but they are sensitive to noise,
which degrades classification accuracy. To solve this
problem, this paper proposes a robust feature
extraction method, called spectral envelope cepstral
coefficients analysis (SECC), where a 4-step filter
(1) a

linear predictive coding (LPC) algorithm to specify

bank based on spectral envelopes is used:

spectral envelopes of all faulty vibration signals, (2)

averaging all envelopes to get general spectral

shape, (3) a gradient descent method to find
maxima and minima of the average envelope and its
frequencies, (4) a non-overlapped filter bank to have
centers calculated from distances between valley
frequencies of the envelope. This filter bank is then
used in cepstral coefficients computation to generate
Finally, we utilize multi-layer
(MLSVM)

several faults of induction motors.

feature vectors.
support vector machines to classify
In addition,
different values of 0 are evaluated in order to
investigate the impact of the sigma value on
classification performance.

The rest of this paper is organized as follows.
Section 2 discusses cepstral coefficient analysis and
support vector machines. Section 3 presents the
proposed fault classification system with new
frequency scale and multi-layer support vector
Section 4

describes the impact of various sigma values on the

machine for multi-class problems.

classification performance for both noise and
noise—free vibration signals, and Section 5 concludes

this paper.

[l. Background Information

1. Cepstral Coefficients Analysis

(CCA) with mel
frequency scale has been widely used in the field of

Cepstral coefficients analysis

speech recognition because it is able to handle
dynamic features of speech by extracting both linear
and non-linear signal properties. Thus, CCA can be
effective in extracting features of vibration signals
since vibration signals also contain both linear and
non-linear features. Fig. 1 shows the concise steps
involved in the computation of the
coefficients (10, 22].

Step 1: Use the fast Fourier transform (FFT) of
vibration signals by using:

cepstral
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Zx(n)a)(n)e TR (1)

n=0

Y(m)=—

where N is the number of points used to calculate
the discrete Fourier transform (DFT), 0=n=<N-1,

and w(n) is the Hamming window function given by:

2rn
0.5-0.5
o(n) = p( cos N 1) (2)

where 0=<n=<N-1 and # is the normalized factor
in which the root mean square of the window is
unity (22).

Step 2: Multiply the power spectrum by each
filter in the filter bank, which has a triangular band

pass frequency response whose magnitude is
determined by (3)
0 Jor f(k)< f.(m=1)

T fmoy [ LS S@ <L)

H(k,m)=14" . (3)

S0~ f.(m+1)
ety or L0 10< LD

0 Jor [(k)= f.(m+1)

where fc is the cut-off frequency of each filter, m
indicates the order of filter in the filter bank, and k

Step 1: Discrete Fourier Transform
A

ranges from O to fs/2 in which fs is the sampling
rate.

Step 3: Convert the logarithmic spectrum back to
the time domain. This conversion is achieved by
taking the DCT of the spectrum such as:

N-1
C = Zcos(m%(n+0.5))logm(Yn), 4)
n=0

where 0=m=N-1, and L is the number of cepstral
coefficients extracted from the vibration signal.
These coefficients are then used as feature vectors of

the vibration signal.

2. Support Vector Machine
The heart of the SVM classifier design is the
notion of margin which is the region between the

two parallel hyperplanes such as:

wiz+w, =1, andw’z +w, =—1. (5)

The key idea in the SVM classifier is that a
hyperplane (6) should be placed between the high
probability density areas of the two classes in (5).

whz+w, =0. (6)

Step 3: Logarithm and

: Filter Bank Discrete Cosine Transform
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Fig. 1. The procedure for the cepstral coefficients computation
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This the

mathematical formulation. Given a set of training

discussion leads to following
points, xi with respective class label yi =1{1, -1}, i
= 1,2,7N, for a 2-class classification task, the SVM

training algorithm computes the hyperplane (6) so

as to
. Iy e il
Minimize J(w,w,,¢&) = EHW" + Cz &
i=1
wix +w,21-&  if x e
Subject to wix +w, <-1+¢& if x, e o,

£>0

where the margin width is equal to 2/lwl. The
margin errors €i are non negative: the margin
errors are zeros for points outside the margin as well
as in the correct side of the classifier: and they are
positive for points inside the margin and on the
wrong side of the classifier. C is a user-defined
constant.

In many applications, SVM with a kernel function
can also be used to deal with the case of
non-linearly separated data sets. There are several
different kernel functions used in SVMs, such as
linear, polynomial, and the Gaussian radial basis
functions. The selection of an appropriate kernel
function is very important since the kernel defines
new feature space in which the training set is
linearly classified. We utilize the Gaussian radial
basis kernel functions to map the input vector to a
SVM  with the

Gaussian radial basis kernel function provides better

high-dimensional feature space.

performance than that with other kernel functions
(18). The Gaussian radial basic function is defined

as follows:

‘svl-—svl-H2
o2 7
k(sv,,sv;)=e 20° @

where k(svi,svj) is the kernel function, svi and svj
are the input feature vectors, and ¢ is a parameter
set by the user to determine the width of the

effective basis kernel function [18].

[ll. Proposed Fault Classification

System
The proposed fault classification system with
MLSVMs consists of two main steps: spectral
envelope based cepstral coefficients (SECC)

analysis, and pattern matching for classification.
The proposed fault classification system adopts
hierarchical paradigm to diagnosis machine faults

from the given dataset as shown in Fig. 2.

Fault Classification

Feature Extraction

[
\I\bratiog' SECC

Signal Analysis

Validation
DataSet

O 2. Mokt 1% 27 AlRE
Fig. 2. The proposed fault classification system

1. SECC (Spectral Envelope Cepstral Coefficients)

When vibration signals are analyzed by cepstral
(CCA), the

coefficients needs to be defined in advance by

coefficients  analysis number  of
specifying number of filters in the filter bank and
frequency intervals. In addition, frequency scales,
used in CCA, are often defined by human auditory
system such as melody scale, or bark scale (22].
This

classifying faults of vibration signals. To solve this

causes inefficiency of feature vectors in

drawback, we propose another approach to
automatically calculate the number of filters and
define frequency intervals of the filter bank. Fig. 3

illustrates the proposed filter bank based on the
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spectral envelope, which consists of the following
four steps.

Step 1 Eight one-second long faulty vibration
signals are used to calculate linear predictive coding
(LPC) coefficients {aklm, m = 1,2,",8 (the number
of faulty symptoms), where k = 1,2,"",P and P is
the order of the LPC. The spectral envelopes of
vibration signals are then defined by the frequency
response of an all-pole filter:

~ P
x[n]= Zakx[n k], 8)
k=1
1 1
H(z)= =— ,
4D g )

k=1

Step 2: The average spectral envelope of eight
faulty vibration signals is calculated.

Step 3 The frequencies are found in which the
average envelope reaches its extremes by using a
gradient decent method.

Step 4: The center frequencies are given by the
peak frequencies of the spectral envelope. In
addition, frequency intervals are calculated by
subtracting the center frequencies from the adjacent
valley frequencies. With the frequency information,

filter coefficients are finally defined by (3).

wm ':.'; L Kx

Step1 Calculate Spectri\tl Envelopes
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Fig. 3. Filter design based on spectral envelope

Fig. 4 shows feature vectors extracted from both

noisy and noiseless signals. The proposed feature
method using SECC differentiates
features of each faulty vibration signal.

extraction

Noiscless Signals

4 & 5 10
The Number of Features

()
Noise attacked Signals (SNR=15dB)

ry G o 76
The Number of Features
(b)

2] 4. SECCol| 2l =55 S7| g
Fig. 4. Feature vectors extracted by SECC

2. MLSVM (Multi-Layer Support Vector Machine)

In previous section, we dealt with the SVM for
2-class case. When more than two classes are
present, there are several approaches that evolve
around 2-class case. In this study, we utilize an
one-against-all (OAA) method to consider more than
two classes of feature vectors. It constructs k SVM
models where k is number of classes. Each one is
designed to separate one class from the rest. The ith
SVM is trained with all data in the ith class with a
positive label (1) and all other classes with a
negative label (-1). Thus, given 1 training data
points (x1,y1), (x2,y2),",(xl,y]), the ith SVM solves
the following problem:
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After training data using OAA, more than one
hyperplane can have a positive value or all of them
can have negative values. This problem can be
solved by a multi-class SVM classifier as shown in
Fig. 2. The order of SVM in the multi-layer SVM is
followed by the descent order of each classifier’s

accuracy.

[V. Experimental Results

1. Experiment and Simulation Setup

To evaluate the performance of the proposed
method, we set up an experimental testbed to
acquire several different faulty vibration signals as
shown in Fig. 5. This setup consists of motors,
pulleys, belt, shaft, and a fan with changeable blade
Six 0.5kW, 60Hz,
motors were used to generate data under full load

pitch angle. 4-pole induction
conditions. We collected one normal signal and 7
different
misalignment (AM), parallel misalignment (PM),
broken rotor bar (BR), bowed rotor shaft (BS),
faulty bearing (FB), rotor imbalance (RI), normal
(NO), and phase imbalance (PI) faults. Table 1

describes different faulty condition of the induction

faulty  signals including angular

motor, where the acquired vibration signals were
sampled at 8 kHz. In addition, we used 105
one-second long vibration signals for each faulty
condition. More detailed information about this

experiment is available at (5, 21J.

J8 5. REXMST| IE AES st AF AlRH
Fig. 5. Experiment system for the fault detection of
induction motors

1. RENSV| e MY

Table 1. Description of the induction motor conditions

Fault Condition Fault Description

adjusting the bearing pedestal up
to 0.480

angular and phase
misalignment

broken rotor bar 12 EA rotor bars were broken

bowed rotor shaft shaft deflection: 0.75 mm

faulty bearing a spalling on the outer race: #6203

unbalance mass on the rotor: 8.4
¢]
resistance to one phase

rotor imbalance

phase imbalance adding

In addition, we add additive white Gaussian noise
with SNR = 10, 15, 20 dB to each normal and
faulty signals. to evaluate the efficiency and
robustness of the proposed method. we used 80%
feature vectors extracted from noiseless vibration
signals as training data, and the rest data (feature
vectors extracted from both noise-free and noise
attacked signals) as testing dataset. To identify
optimal sigma values set with feature vectors
extracted from both noiseless and noise attacked
vibration signals by using the proposed SECC
analysis, we measured the classification performance

with ¢ values in the range of 0.3 to 2.

2. System Performance with  Noiseless Vibration
Signals

To evaluate the performance of the proposed
approach, we compare the proposed SECC with

MFCC [(10), STE+SVD (23) in terms of
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classification accuracy.
Table 2

proposed SECC and other conventional methods with

shows classification accuracy of the

various sigma values for noiseless vibration signals.
The highest classification performance is achieved
when the standard deviation (0) of each classifier
reaches to a certain value. In order to correctly
classify between AM and BR, 01 and 02 are
required more than 0.7 and 0.5, respectively. For
classifying among BS, PI, and RI, the maximum
performance is achieved when the values of 03, 07,
and 08 are not smaller than 0.6, 1, and 0.8,
respectively. the
accuracy is 100% when 04 is higher than 0.3 for FB
and 06 is higher than 0.4 for PM. Finally, the

Furthermore, classification

highest classification accuracy is achieved when 05
is higher than 1.2 for nominal condition (NO). In
addition to noiseless vibration signals, we also
evaluate classification accuracy of the proposed
method with noise attached vibration signals, which

is presented in the following section.

3. Performance of Classifiers with Noise Attacked
Vibration Signals

To evaluate the effectiveness of the proposed
extraction method for additive white Gaussian noise
signals, we train MLSVM with features extracted
from original signals and measure the classification

accuracy using test data including additive white

2. 0z} gls TSUEE AKSSH 1 2R 45
Table 2: Fault classification performance using noiseless vibration signals

Sigma

Methods et 0.3(04|05|06(07(08(09| 1 (1.1/12|13|14|15|1.6|1.7|18|1.9]| 2
Type

AM 97.5199.09/99.565| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

BR 96.14| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

BS 97.05(97.95( 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

MFCC FB 99.32| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

(10) NO 96.1497.05(99.09(99.55| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

PM 95.91| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

Pl 95.45|95.45 | 95.6897.27{99.55| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

RI 97.05|97.05(97.05| 97.5 {97.95[98.64| 100 |99.77|99.77|99.77 [ 99.77 | 99.77 | 99.77 | 99.77 | 99.77|99.77 | 99.77 | 100

AM 95.23/96.14(99.09| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

BR 95.45196.14|97.95(98.64| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

BS 96.14|97.05 | 97.05 [ 99.55 | 99.55 [ 99.55|99.55| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

STE+SVD FB 98.64(99.55( 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

(23) NO 95.23|97.05(98.41(99.56| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

PM 96.82(99.09| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

Pl 95 |95.45(96.59(99.32(99.77| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

RI 97.05(97.05| 97.5 [97.95(99.32(99.77|99.77| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

AM 96.36|98.8699.0999.55| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

BR 97.5 199.77| 100 | 100 | 100 [ 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

BS 96.82| 97.5 (99.32| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

SECC FB 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

[pror;osed NO 96.82(97.05| 97.5 | 97.5 {98.18]98.64|99.55|99.565|99.565| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

PM 96.36| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

PI 95.45|95.45 | 96.14 | 96.82 | 97.05 | 98.64 | 98.64| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

RI 97.05| 975 |97.95(97.95{99.09| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
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Gaussian noise. The more severely noise attacks, the
more overlapping feature vectors are generated. We
observe that features extracted from the nominal
(NO)
overlapped. This results in decreasing classification

and rotor imbalance (RI) conditions are

and RI is the lowest at SNR = 10dB, showing about
87.5%. However, the proposed SECC still provides
higher classification accuracy about 96.7% and
99.3% for NO and RI, respectively, at the same SNR
= 10dB.

accuracy between NO and RI.

Table 3 shows selected optimal sigma values for
MLSVM with Gaussian kernel functions. Tables 4,

5, and 6

show the fault classification accuracy of

the conventional MFCC, STE plus SVD, and the
proposed SECC,

respectively. The classification

induction motors,

V. Conclusions

For early detection and classification of faults in

this paper proposed a robust

accuracy of the conventional methods between NO feature extraction — method —that s cepstral
coefficients based on the spectral envelope. These
H 3. 7IRAlRE 7L BB JHKle MLSVME I8 &[&o| EF Hkt
Table. 3: The optimal standard deviation set for MLSVM with Gaussian kernel functions
ol (AM) 02 (BR) 03 (BS) o4 (FB) 05 (NO) 06 (PM) o7 (P o8 (RI)
1.6 1.8 1.2 1.2 1.8 1.6 1.8 1.7
E 4. MFCCet MLSVME AlEst 1% &f Helr
Table 4: Fault classification accuracy using MFCC and MLSVM

Methods $322 S;‘:\Irga 0304|0506 |07[08[09| 1 |11]12[13|14|15[16|17|18]|19]20
10 |875|87.5|87.5|875|875|87.5|87.5|87.5|87.5|87.5|87.73|88.64|90.45|93.64|95.45|97.05|98.41(98.86

AM 16 |87.5|87.5|87.5|87.5[83.41|91.59|93.41|95.68|97.95/98.86|98.86/99.09(99.55| 100 | 100 [ 100 | 100 | 100

20 |88.41(92.27|94.32|96.59(99.55(/99.77| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

10 |875|875|87.5|875|875|875|87.5|875|875|87.56|87.5|87.5|875|87.5|87.5|87.5|87.73|87.95

BR 16 |875|87.5|87.5|87.5|87.5|87.73|88.64|89.77|91.14{93.64|97.05|98.64| 100 | 100 | 100 [ 100 | 100 | 100

20 |87.73| 90 |92.27(95.68|97.5| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

10 |875|875|87.5|875|875|875|87.5|875|875|87.56|87.5|87.5|87.5|87.5[89.55(90.91|93.41(95.23

BS 16 |87.5|87.5|87.5|87.5[87.73|189.32|90.45|93.41|96.36(97.95|98.86|99.55(99.77| 100 | 100 [ 100 | 100 | 100

20 |87.95(91.82|95.23[97.27|98.86(99.55(99.55(99.565(99.77| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

10 |87.5|87.5|87.5|87.5[87.73|190.68|92.73|95.45|99.32| 100 | 100 | 100 [ 100 | 100 | 100 | 100 | 100 | 100

FB 16 |87.5(91.14|97.05/99.55| 100 | 100 | 100 | 100 | 100 [ 100 | 100 | 100 [ 100 | 100 | 100 | 100 | 100 | 100

MFCC 20 97.73(99.32|99.77| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
(10) 10 |875|875|87.5|875|875|875|87.5|875|875|87.5|875|875|875|87.5|87.5|87.5|875|875
NO 16 | 87.5(87.73(89.09|91.14|93.41|96.36|98.41|98.86|99.09({99.55| 100 | 100 [ 100 | 100 [99.55( 95.1 | 93.7 | 90.1

20 |87.5|87.5|89.77|94.55| 97.5 {99.55[99.55(|99.565/99.77| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 87.5

10 |875|875|87.5|875|875|87.5|87.5|87.5|87.5|87.5|87.95/88.86(90.91|91.36{93.41| 95 |96.14(97.27

PM 16 |87.5|87.5|87.5(87.95/88.64|90.45|92.73|96.36|97.95(98.64|99.32| 100 | 100 | 100 | 100 | 100 | 100 | 100

20 |87.73|89.55|96.36(97.95(99.77| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

10 |875|875|87.5|875|875|875|87.5|875|875|87.5|875|875|875|87.5|87.5|87.5|875|875

Pl 16 |875|87.5|87.5|87.5|87.5|87.95|87.95|88.64|90.91(93.64|95.91|97.95(99.32|99.77| 100 | 100 | 100 | 100

20 |87.73|89.55|92.73|94.32|95.68|97.95(99.32|99.77| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

10 |875|875|875|875|875|875|87.5|875|875|87.56|87.5|87.5|87.5|87.5|87.5|87.27|87.27(86.36

RI 16 |875|87.5|87.5|87.5|87.5|87.27|86.82|86.14|85.45| 85 |85.68|87.95(90.68|92.73]92.73(93.63|93.63(93.41

20 |87.5|87.5|87.95(89.55(91.82|94.55(96.14(97.27|97.95|98.41|98.41(98.41|98.41|98.41|98.18|98.18(98.18|98.18
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Table 5: Fault classification accuracy using STE+SVD and MLSVM

Methods_'lz_\a/gletsé?\:;a 03/04|05[06[07]08[09| 1 |[1.1|12[13[1.4[15[16/[17]18]1.9]|2.0
10 |87.5]875]87.5|87.5]87.5| 875|875 |87.5|87.5|87.5| 875 |87.5| 875 | 87.5 | 87.5 [83.41] 90 [93.86

am| 15 |[87.5]87.5|87.5|87.5 | 87.5 |87.95|88.86|92.95|96.59|98.64|99.77| 100 | 100 | 100 | 100 | 100 | 100 | 100

20 |87.73| 90 |96.36(99.77| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

10 |875|875|87.5|87.5|87.5 875 | 875|875 |87.5|87.5|87.5|87.5 | 875 | 87.5 | 87.5 | 87.5| 87.5 | 875

BR| 15 |87.5|87.5|875|87.5|87.5|87.5|875|87.5|87.5|87.5 875 |87.5 | 87.5| 87.5 | 87.5 | 87.5 | 87.5 | 87.5

20 |875|87.5|875|87.5|87.5|87.5|87.5|87.5 | 87.5| 875 | 87.5 | 87.5 | 87.5 | 87.5 [87.73(88.1889.32{00.45

10 |875|875|87.5(87.5|87.5 875 | 87.5 | 87.5 87.73(89.09]92.27|05.23| 97.5 |99.55| 100 | 100 | 100 | 100

Bs | 15 |[s7.5]87.5|89.09|92.7395.91|98.41] 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

20 [04.0997.27|98.18]99.77| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

10 |87.5|875|87.5 | 87.5|88.64(93.41|98.41| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

FB | 15 [e8.18]96.36| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
STE+SV 20 [99.32] 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
[23] 10 |87.5|875|87.5|87.5|87.5|87.5|87.5|87.5|87.5 | 87.5 875 |87.5 | 875 | 87.5 | 87.5 | 87.5 | 87.5 | 87.5
No | 15 |s87.5|87.5|87.5(87.5|87.5|87.5|87.5|87.5|87.587.95| 90 |92.05]93.64[04.55| 95 |95.91|96.50|96.82

20 |87.5(87.73]00.68(95.45| 97.5 |99.09|99.55(99.77| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

10 |875|875|87.5|87.5|87.5|87.5 | 875|875 |87.5|87.5|87.5|87.5 | 875 | 87.5 | 87.5 | 87.5 |87.73[87.95

PM | 15 |87.5|87.5|875|87.5|87.5 | 87.5 |87.73|89.55|93.18|96.82(99.32| 100 | 100 | 100 | 100 | 100 | 100 | 100

20 |87.5(87.95/94.32]99.32| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

10 |s75|875|87.5|87.5(87.5 (875 | 875|875 |87.5|87.5|87.5 | 87.5 | 7.5 |87.73|88.41| 90 [93.86(97.95

Pl | 15 |87.5|87.5|87.5|87.5 | 87.5 |s8.86|91.82|95.68/98.41| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

20 |87.73(91.82|04.55|95.45|96.82|98.64] 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

10 |875|875|87.5|87.5|87.5|875 875|875 |87.5|87.5|87.5| 875|875 | 875 | 87.5 | 87.5 | 87.5 | 875

R | 156 |87.5|87.5(87.5|87.5|87.5|875|87.5|87.5|87.5|87.5 | 87.5 | 87.5 | 87.5 |87.73|83.18(89.32| 90 [91.36

20 |87.5(87.5|87.5 | 87.5 |88.64(80.77|93.64|95.68|96.82| 97.5 |98.86|99.55(99.77| 100 | 100 | 100 | 100 | 100

cepstral coefficients well reflected vibration signals
with and without noise of induction motors.
Experimental results showed that the proposed
method outperforms other conventional methods
with the same multi-class SVMs in terms of

classification accuracy.
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Table 6: Fault classification accuracy using the proposed SECC and MLSVM
Methods_'lij:let Sé‘,‘\l’;a 03/04(05[0607(08[09] 1 |1.1[1.2[13|14|15[16/[1.7|1.8|19]20
10 [875(87.5|87.5]87.5|87.5 | 87.5 [88.41(00.23]93.41|96.82]98.41]99.32|99.77] 100 | 100 | 100 | 100 | 100
Am | 15 |875|87.5|87.5| 875|875 |87.73]80.55|91.8294.77| 97.5 |98.86(99.77| 100 | 100 | 100 | 100 | 100 | 100
20 |87.73]|90.23|95.68(98.41(99.55| 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100
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