본 논문의 저자는 원자력 발전소와 같은 복잡한 대규모의 시스템의 실시간 고장진단 방법을 1994년 IEEE TNS Vol. 41, No. 4 호[1]에 발표하였다. 이번 논문에서는 고장전파모델(FPM)로서 같은 'Timed SDG Model' 를 사용하고 있으나 고장전파시간( FPT)을 에메논리 개념을 이용하여 정확하게 구하기 어려운 FPT을 실질적으로 이용할 수 있도록 했으며, 또한 고장전파확율(FPP)개념을 도입하여 하나이상의 고장원인 절점 (Node)들을 절점고장율과 더불어, 보다 효과적으로 판별할 수 있도록 했다. 또 FPM내에서 고장의 전파확율를 고려함으로서 보다 실질적인 고장 진단방법을 제시하였으며 본 제안된 방법을 고리 원전 2호기 1차계통에 적용하여 1차계통 FPM내의 각 FPP이 ‘1’인 경우에 한하여 그 성능을 입증하여 보았다.
본 연구에서는 공정 중에 민감하게 반응하는 플라즈마로부터 수집되는 이온에너지 분포(IED : Ion Energy Distribution)와 시계열 신경망 모델링을 결합한 플라즈마 감시 기술을 개발하였다. NIEA(Non-invasive ion analyzer)를 이용하여 IED를 측정하였으며, 모델링에 사용된 신경망은 자기 상관 시계열 신경망(A-NTS : Auto-Correlated Neural Time-Series)이다. 모델 개발을 위한 학습과 테스트 데이터로는 Duty ratio 100%에서 수집한 IED를 이용하였으며, 개발된 모델의 감시 성능은 60%에서 수집된 IED로 평가하였다. 학습인자 k와 m의 범위는 각각 1-3 으로 총 9종류의 (k, m) 조합에 대해서 모델 성능을 평가하였다. 신경망 은닉층 뉴런수는 2-9의 범위에서 최적화하였다. 최적화된 모델은 (2, 3)과 뉴런수 2에서 구해졌으며, 0.335의 예측 에러를 보였다. 60% IED 데이터로 평가한 결과 플라즈마 고장에의 민감도는 62% 이상이었다. 이는 IED의 A-NTS 모델이 플라즈마 고장의 감시에 효과적으로 적용될 수 있음을 의미한다.
시험기간 동안 수집된 고장 데이터를 이용하여 소프트웨어 신뢰도를 예측할 수 있는 모델은 많으나 이 예측 방법은 정확하지 못하며, 특히 초기 시험 단계에서는 더욱 더 부정확하여 예측자들은 이러한 소프트웨어 신뢰도 모델의 적용을 주저한다. 한편 소프트웨어 신뢰도 성장 모델은 유사 프로젝트나 개발 초기에 얻은 정보를 가지고는 신뢰도 예측 데이터로 활용이 불가능하다. 예를 들면 최근의 소프트웨어 시스템들은 항시 유사 프로젝트들로부터 활용이 가능한 일련의 정보와 동일 응용 영역의 초기 또는 최신의 정보들이 변경, 개선되기 때문이다. 본 논문에서는 유사한 프로젝트로부터 얻은 공통의 데이터들을 활용하여 소프트웨어 신뢰도를 예측할 수 있는 방법들을 제안한다. 특히 일반적으로 사용되고 있는 Goel-Okumoto(G-O) 모델이나 고장 검출률을 이용하거나 시험 데이터를 활용하는 방법 등을 이용하여 모델 파라미터를 추정하고 실제 프로젝트 수행중에 얻어진 각종 결과를 토대로 해서 Numerical Algorithm이 아닌 통계적인 관점의 분석 결과와 MLE(Maximum Likelihood Estimation) 추정 방법 등을 동원하여 초기에 우리 프로젝트에 맞는 정확한 소프트웨어 신뢰도 평가 방법을 제안하였다.
발전시설 장비는 이상이 생기면 큰 경제적 피해를 발생시키기 때문에, 장비의 계통마다 수십만 개의 센서들이 부착되어 장비의 정상 작동 여부를 모니터링 한다. 장비의 이상 감지를 위해서, 최근 활발히 연구되고 있는 딥러닝 등의 기술을 활용한 AI 모델을 생성하여 장비의 고장을 예측한다. AI 모델을 학습하고 추론하기 위해서는 수많은 센서 중에서 AI 모델을 생성할 센서들을 선택하고, 지속적으로 모니터링 되는 값들을 비교하여 이상 감지 여부를 스트리밍 환경에서 추론할 수 있는 센서 빅데이터 질의 처리 및 스트리밍 추론 시스템이 필요하다. 본 논문에서는 AI 모델을 학습하고 스트리밍 추론할 수 있는 빅데이터 질의 처리 시스템을 설계 및 구현한다.
무인기용 터보제트엔진의 운전 중 발생하는 고장을 실시간으로 진단하기 위한 방안 및 성능 열화와 관련된 건정성 추정에 관해 연구하였다. 이를 위해서, 동적 열역학 가스경로해석을 통한 비선형 동특성 방정식으로부터 실시간 선형모델을 도출하였고, 연출된 운전상황과 고장 발생을 실시간으로 진단하기 위해 칼만필터와 가설 검증에 기초한 확률적 판단 기법을 적용하였다. 이 결과, 분명한 고장 검출과 분리 성능을 보임으로써 그 효용성을 확인하였다. 측정변수를 통한 건전성 추정과 관련하여, 실제 엔진 구성품의 성능 열화 추이를 모사하였고, 적응형 칼만필터를 적용하여 추정 기법의 타당성을 입증함으로써, 상태 기반 고장 진단 및 정비 기법에 효과적으로 사용될 수 있음을 보였다.
이 논문에서는 신호 모델에 기반하여 유도전동기의 고장 검출 및 고장 진단을 위한 새로운 시스템을 제안한다. 산업현장에 적용하는 기존의 제품들은 신호가 문턱치를 넘어면 고장을 검출하는 단순한 알고리듬을 가지고 있어 고장의 유형이나 고장을 예측하는데 문제가 있다. 이 논문에서는 이러한 문제들을 해결하기 위한 시스템을 제안한다. 이 시스템은 고장 검출 과정과 고장 진단 과정으로 구성되며, 고장 검출 과정은 기계 신호음들이 웨이블렛 필터뱅크를 통과한 후 웨이블렛 계수들의 분산과 상관도를 분석하여 고장을 검출한다. 고장 진단 과정은 패턴분류기술을 적용하여 고장의 유형을 진단하게 된다. 대표적인 유도전동기 고장 유형들로서는 불평형, 미스얼라이먼트, 그리고 베어링 루스 등이 있으며, 이러한 유형들은 제안하는 시스템에서 분석되고 진단을 받게 된다. 제안하는 시스템에 적용한 결과 상관도를 이용한 방법은 78 %, 분산을 이용한 방법은 95 % 이상의 고장진단율을 보이는 우수한 결과를 나타내었다.
그동안 소프트웨어의 신뢰도가 테스트중은 물론 운영중에도 고장을 검출 및 수벙함으로써 성장될 수 있다는 가정 하에 SRGM이 연구되어왔다. 한편, 어떤 논문에서는 운영중에 소프트웨어를 수정한다는 것이 특히 범용 소프트웨어인 경우 불가능에 가깝기 때문에 테스트노력이 일정한 것으로 가정하기도 하였다.. 저자는 소프트웨어의 신뢰도 현상에 접근할 수 있는 단순한 기법을 제안하여 기존신뢰도 모델을 수정하지 않고 고장률을 줄일 수 있도록 하는 방안을 제시한다.
현재 다양한 분야에서 이중 포트 메모리의 사용이 증가함에 따라서 이중 포트 메모리의 고장을 진단하기 위한 효율적인 고장 진단 알고리듬의 필_도성이 증대되고 있다. 따라서 본 논문에서는 이중 포트 메모리에서의 효율적인 고장 진단 알고리듬을 제시하여 이중 포트 메모리에서 발생하는 거의 모든 종류의 고장에 대한 진단을 가능하게 한다. 또한 진단 과정에서 착오를 일으키지 않고 다양한 고장 모델을 구별하며 고장과 관련된 위치를 정확하게 확인하는 것이 가능하다. 새로운 진단 알고리듬을 사용함으로서 이중 포트 메모리에서의 고장 진단과정은 효과적으로 수행될 수 있으며 이전의 다른 연구들과의 성능 평가를 통해 효율성을 확인할 수 있다.
센서 네트워크에서 시각 동기 기술은 위치 추적, 암호화 기술에서의 타임 스탬프, 타 노드들로부터의 같은 이벤트 중복 감지 인식, 기록된 이벤트들의 발생 순서 구분 등 다양한 응용을 위해 필수적이다. 그리고 최근 센서 네트워크에서 신뢰성 및 고장 허용성에 대한 문제가 최근 연구의 주요한 영역으로 대두되고 있다. 본 논문에서는 네트워크 고장과 클럭 고장이라는 두가지 고장 모델을 가정하여 센서 네트워크에서 고장 허용 시각 관리 기법에 대해 제시한다. 제안한 기법은 노드 클럭의 불안정한 동요나 표류율에 심각한 변화가 발생하는 등의 고장이 발생했을 때 이러한 클럭 오류의 네트워크 전파를 제한하며 토폴로지 변화에 대응한다. 시뮬레이션 결과는 제안한 동기 기법이 기존의 TPSN과 비교하여 클럭 고장이 있을 때 동기화 비율이 $1.5{\sim}2.0$배 나은 성능을 보인다.
전력은 공공재화로서 광역정전이나 전역정전이 발생하면 전력공급에 매우 심각한 문제가 발생하므로 이에 대한 합리적인 분석과 효과적인 대책 수립이 필요하다. 송전계통의 주 구성요소인 선로, 철탑, 변압기, 개폐장치들은 장기 사용에 따른 노후화와 같은 문제와 절연의 특성상 초고압전기 절연의 근원적 난점 등으로 다수의 절연파괴 고장이 불시에 발생하게 되어 전력공급의 신뢰성을 떨어뜨리게 된다. 이와 같이 전력기기들은 사전에 진단을 하여 기기의 상태를 알아내는 것이 필요하다. 주요 기기에 대한 진단은 데이터베이스의 구축과 이로부터 고장을 예측하고 신뢰성을 평가하는 것으로 이루어진다. 이를 위해 보다 정교하고 정확한 고장 예측 기술, 진단기술, 신뢰성 평가기술을 개발할 필요가 있다. 본 논문에서는 송전기기의 유지보수를 위한 기기 상태 추정 모델을 제시하고, 송전유지보수 전략 수립을 위한 방법을 제시한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.