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Abstract

This paper provides an improvement on our previous study [1] for multi-fault diagnosis in real
time in large-scale systems. In the method, fault propagation probabilit{FPP) and fault propagation
time(FPT) in a fuzzy sense are additively used to describe the fault propagation model(FPM) in
more practical manner. A modified fault diagnosis procedure is also given. This method is applied
for diagnosis of the primary system in the Kori nuclear power plant unit 2 under a transient con-
dition in case of unit value of FPP on each branch of the FPM.
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1. Introduction

In a complex and large-scale systems such as nu-
clear power plants which are strongly nonlinear
systems, signal vaildation is very imporant for proper
plant surveillance, control, and safe operation. A
good example of its relevance is a nuclear power
plant, where after a fault tens of alarms can occur in
a few seconds, which make it very difficult to locate
the faults(s) origin when there is influx of abnormal
signals because abnormal states in the plant are often
detected at devices other than at the failed device
(fault origin).

A number of useful technique for the automated
fault diagnosis have been suggested in the literature
{1-12]. Any technique for automated fault diagnosis
may be classified into either as a quantitative method
or as a qualitative one, depending on the rigor and
precision of the used model. The quantitative fault
diagnosis usually adopts a thermo-hydraulic math-

ematical model, and this method requires heavy com-

putational load with extensive engineering man-

power. The performance of model-based approaches

depends strongly on the accuracy of the model. Ever-

y important dynamic characteristics should be in-
cluded in the model. It must be able to handle chan-
ges in the operating point. If the model is not appro-
priate, the whole diagnostic system may fail to func-
tion properly. The sensitivity to modelling errors has
become the key problem of the model-based method-
s4].

The qualitative approach, on the other hand, is
often capable of indentifying core knowledge of the
process such as the variables and the signs of coeffic-
jents of the goveming equations. The signed directed
graph (SDG) is one of the most commonly used
qualitative models to represent the causal effects be-
tween process variables. Nodes are used to represent
the process variables or the process devices while
branches are adopted to represent the influence be-
tween two adjacent nodes.

There are, l.owever, some restrictions of the exist-

ing methods to real plant application due to (1) lim-
ited detection capability due to modelling error and
computational load for the model-based diagnosis
method[11], (2) the exact rule-derivation problem to
avoid the spurious solutions for a nile-based fault di-
agnosis(3, 7, 9, 10], (3) a required large historical
data treatment and no explanation capability {‘How’
and ‘Why' functions) about the diagnosed results in
case of artificial neural network(ANN)-based fault di-
agnosis[2, 4, 5, 8]. It is noted that there are some
basic assumptions such as a single fault case, a single
operating condition, and a steady-state condition in
most existing fault diagnosis methods as described in
the literature.

In this study an improved method is proposed by
utilizing the signed directed graph(SDG) as fault
propagation models (FPMs) with fault propagation
time(FPT) and fault propagation probability(FPP) on
each branch with feedback and feedforward control
loops, ANNs capabilities such as non-linear mapping,
classification, and a parallel computing capabilities,
and together with a process knowledge-based system
to eliminate spurious faults. The FPPs and fault rates
of devices are used to evaluate the priority ranking
among candidates of a fault origin.

The FPT can be obtained through plant oper-
ational data, expert knowledge ,and the analysis in-
cluding a computer simulation.

But it is not easy to get the exact value of each
FPT in the timed SDG mode], rather it is more prac-
tical to consider each FPT value as the value in a fuz
zy sense. In this paperthe fuzzy concept is also
introduced to calculate the FPT value for the real
application.

The proposed method may solve the following is-
sues which can be encountered in the real plant en-
vironment ;

(1) a large-scale system with many operating condi-
tions

{2) frequently a tansient condition rather than a
steady-state condition

{3) multiple fault case as well as a sigle fault case
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{4) urgency of the early detection and diagnosis of
faultincipient fault(s) diagnosis.

This paper describes a fault propagation model,
subsystem division, training data extraction, and fault
diagnosis in sequence. Finally application to the Kori
Nuclear Power Plant unit 2 is described.

2. Description of the Fault Propagation Model

A SDG model is commonly used for a FPM to rep-

resent the causal effects between process variables[9,
10]. The SDG in this work consists of nodes and
branches with fuzzy FPTs and FPPs newly added on
each branch . The nodes in the digraph represent
the physical process variables or the process devices.
The branches represent the causal relationships be-
tween them. The “qualitative state” of a process vari-

able is defined to correspond to one of the three pos-

sible ranges, that is, low, normmnal, and high, which are
sometimes represented simply as —1, 0, and +1,
respectively.

The qualitative relationship between node A and
A is described as follows:

&, &, Py
O —> O (1)
A A
Here «; represents the sign(A — A), ; the FPT, and
py the FPP from node A to node A.

In the sense of qualitative state, nodes take the val-

ue of high, nommal, or low. For a typical sensor node
A the node A is expressed in the following form of
deviation index{2] :

measured A — nominal A

A= threshold for A
A,—A
= T (2)

where A, denotes the measured value of A, A the
nominal value of A, and A, the threshold value of A

The value of A varies dependjng on the magni-
tude of three variables A,, A and A, Also the value

J. Korean Nuclear Society, Vol. 27, No. 5, October 1995

of node A can be considered as a continuous value
ranging from ‘high’ to ‘low’ in a quantitative manner.

The sign(A—A)= ‘+’means that a positive {or
negative) deviation in A leads to a positive (or nega-
tive) deviation in A. The values of a; and t; can be
obtained from operational experience, plant data, or
the mathematical model. When the operational data
or experience of operators are not sufficient to obtain
the representation of a process, it is desirable to con-
struct the SDG from the process model.

The process model is usually described by a set of
ordinary equations (ODEs) and algebraic equations.
If the model is given by a set of ODEs of the form,

dZ,'/dt == f(Z],Zz, ot ,Z”) (3)

where Z is the state variable of the process, the caus-
al relation of a branch in this case is defined to start
from Z if (af /2Z)#0 and the sign of (2f,/2Z) is assig-
ned to the branch.

In general, it may not be easy to get ¢; on each
branch only from Eq (3), especially when there are
coupled terms among the state variables in Eq (3).
The t; in this case, can be estimated from the know-
edge of the process characteristics and statistical
data, which are acquired from the process and ex-
perienced experts. Also it may be obtained by simu-
lating the process model depicted by ODEs. For the
first-order lag system, for example, the time constant
of the step input response can be considered as the
fault propagation time of this system. Since the fault
diagnosis is performed by applying the sensor patter-
ns to the pre-trained ANNs, the fault propagation
time, t;, is used to estimate the propagation time dif-
ference from the fault origin to various sensors which
indicate final symptom to this fault node and to get
the sensor patterns under transient conditions. It is
remarked that the fault propagation time is not req-
uired for steady-state fault diagnosis.

2.1. Division into Subsystems

We propose that the system be divided into several
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smaller subsystems so that each neural network takes
charge of the fault diagnosis of each subsystem in

real time with desirable efficiency. Specially, the whol-

e system for fault diagnosis is hierarchically compos-
ed of the lower level modular-type neural networks
and the top level supervisor (refer to Figure 1).

In general, some subsystems are physically
inter-connected with each other while the fault diag-
nosis is performed at each subsystem independently.
When a fault occurs in a subsystem, the fault can

propagate to its adjacent subsystems that are connec-

ted to the faulty subsystem even though they are faul-

tfree originally. These adjacent subsystems may be
diagnosed as having faults and can declare the exist-
ence of faults. This kind of faults is called “spurious
faults”. The spurious faults, in this work, are re-
moved at the top level supervisor using the know-
edge on the interrelation of the divided subsystems
and the propagation time sequence of fault occur-
rence at each subsystem.

The size of a subsystem can be determined dep-
ending on the characteristics of the system and on
the physical relationship among subsystems as well as

in consideration of effectiveness in computation. It is

[ TOP LEVEL SUPERVISOR ]|

SYSTEM STRUCTURE
IDENTIFIER J ( SENSOR SIGNALS l

—> : Direction of sensor signals or information flow
-- - : Direction of faults propagation
ANNi : Anificial neutral network i for diagnosing subsystem i

FRT : Report of fault origin and the corresponding
treatment guideline

Fig. 1. Hierarchical Structure for Fault Diagnosis in a
Large-scale System

desirable that any closed control loop should not be
tormn apart among subsystems but be included in a
subsystem.

A system structure identifier which can be achieved
by using an unsupervised learning technique such as
the Hebbian leaming algorithm or the Kohonen’s al-
gorithm [14, 15] is employed to identify overall sys-
tem operating conditions, which is to cover the whol-
e range of operating application, not for the any fix-

ed operation condition.
2.2. Control Loops

There are two kinds of control loops which are
feedforward control loop and feedback control loop.
In case of a feedforward control loop with multiple
paths, it is hard to determine the state of final node
to which each path from the starting node may have
defferent effect.

Consider the digraph of figure 2 with A=+1 as
the fault origin and n paths from node A to node A.

Between two nodes A and A, a gain term g; for
each path is newly added to help determine the final
state at node A which may be unknown yet due to
the different fault propagation time and the sign on
each path. There may be more than one path to de-
termine the final state of the nodel A from the node

O.i‘-(l). &,‘(l)r tu’(l), f.-).“)

ay(m) go) t(o), P.*)-“‘)

gi(k)ismegainbctwocnnodcsAiand&.k=1,2,3,...,11

( Dominant forward control loop with g'_,, . E , and E )

Fig. 2. Feedforward Control Loop with Multiple Paths
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A. Thus, suppose that gy as well as t; and «; on each
path is predetermined. Then, for N being the number
of the survived paths from A to A which contribute
to the determination of the final state of the node A,
we can set g to be the total gain of the N survived
paths as follows :

i = 2 (&B) + ay(B), Nen

@)

With g, we can estimate the final state of the node
A by using the following equation in a quantitative

manner :
! Ei (5)
where
4A = A,—A

and the resulting FPT ¢, in this case is also estimated
according to g, that is, the t, can be the maximum
FPT among N t,;s of N paths which affect the deter-
mination of g, The resulting FPP, Py, can be obtain-
ed in the following equation,

p; = max (min(2;() ,7g5(D)) (6

tEN
where ng; is the normalized absolute gain value with
maximum value of 1.

The relation (5) can be used to establish the final
state of a node in a steady state or in a quasi-steady
state condition. The transient or inter-state of the
node A may also be determined by analyzing the
behavior of the node A using g, t, a;, and p; on
each path.

For a feedback control loop with a single output,
there are two operation modes in the control loop
for the external disturbance. These are the normal

loop working mode and the saturated mode. The sat-

urated mode is for the case when the size of the dis-
turbance exceeds the compensation capability of the
loop. In case of internal faults of the control loop
such as device faults, excessive setpoint change, or
disturbance, etc., there is no more compensationg
capability available within the control loop, and the
control loop becomes an ordinary digraph.

dJ. Korean Nuclear Society, Vol. 27, No. 5, October 1995

In general, if the feedback control loop is infiuen-
ced by an excessive external disturbance or fault, it
fails to compensate for the disturbance. In this case,
the compensating feedback path does not function
any longer and only feedforward path(s) remains in
operation. If the feedback control loop maintains its
normal control capability against the external influ-
ence, then the controlled variable and its related var-
iables do not appear via control action within the
control loop. In case of fault(s) within the feedback
control loop, the feedback controi loop becomes an
ordinary digraph and it is not a control loop any
more.

3. Training Data Extraction

It is very important to get reliable training data to
describe the system behavior fairly well even though
data are formed based on a system model, not based
on the expert knowledge. It is also desirable to ex-
plain the extracted data flow including the routes of
fault propagation. The SDG model described in the
previous section is used as a systematic fault model
for generating training data for the fault diagnosis in
this work.

3.1. Steady-state or Quasi-steady-state Case

It is quite difficult to locate the fault origin exactly,
especially when the abnormal signals grow exponen-
tially and appear for a short time, because the abnor-
mal states in the process are often detected at dev-
ices other than the failed device itself. When a fault
exists in the form of positive fault (‘ +’) or negative
fault{' —’) in the SDG, the fault can propagate into
the adjacent nodes in the arrow directions with the
sign influence on each branch connected to the fault
source until the affected sensors exhibit the prescrib-
ed corresponding symptoms.

Under the assumption that when a node generates
a fault, the other nodes in the SDG remain normal,
the procedure to get the symptom patterns of sensor
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s for the training data of a subsystem is given as fol-

lows:

1) Draw a SDG for the subsystem. The readings of
sensors are transformed into some continuous val-
ues using Eq. (2).

2) Mark with the superscript of asterisk the first nod-
es that are connected to the nodes of the adjac-
ent subsystems. These marked nodes will be util-
ized for the system-wise faults diagnosis later in
section 4.

3) Convert the feedforward loop with multiple paths
into the digraph with dominant path with 9 by
and p, using Eqs. (5)&(6).

4) Select one process device node with “source
node =‘+1"" as the fault origin, the total influ-
ence from the source node to all the affected sen-
sor nodes is calculated as follows:

The state of a sensor node=The state of a source

node - Egn— - FPT

where sign and FPT are the total sign and the total

FPT which are obtained by multiplying all signs and

all FPTs along the path from the source node to the

sensor node respectively.

5) Put the total influence which is sign - FPT be-
tween the source node and all the affected sensor
nodes. The ’0" means that the selected source
node does not affect the corresponding sensor

node.

6) Repeat step 4) and step 5) for the rest of the nod-

es of process devices within the subsystemn includ-
ing the sensor itself. Finally, the relationship be-
tween causes as source nodes and consequences
as the corresponding sensor pattems is obtained
in a table called “cause and consequence table”.

7) Put the same patterns into one group and obtain
the reduced cause and consequence table. This
reduced table is used for training the ANN for the
fault diagnosis of the subsystem.

8) Repeat the whole procedure from step 4) to step
7) in case each source node="—1".

It is remarked that some physical parameters such

as flow and pressure can not propagate any further
when a valve along the path is closed due to high or
low predetermined setpoints. In this case, we can gen.
erate two types of sensor patterns-the valve open
case and the valve close case.

3.2. Transient Case

In order to train an ANN for the fault diagnosis
under a transient, we need a large time-dependent
data of sensors which represent the trace of each
fault propagating into sensors with time. There can
be different symptoms of sensors, which reflects the
degree of influence propagated from a fault as time
passes by, but it not easy to get transient data for
every possible fault case in the real plant.

If the fault propagation time on each branch is
obtained as stated in section 2, we can generate the
sensor patterns from each fault origin under a transi-
ent condition from the time differences arriving at
each sensor from a fault origin. [t is done by using
the information on the fault propagation times along
the corresponding paths. There may be more than
one sensor pattern before settling to the steady-state
depending on the sequence of the symptoms of sen-
sors from a propagated fault. In most practical cases,
it is very difficult to calculate the exact value of FPT,
rather each FPT value can be considered as a value
in a fuzzy sense.

A fuzzy variable ,which is defined as a convex nor-
malized fuzzy set of the real line by Zimmermann
(1985)[16] is introduced to depict an uncertain FPT
from node x, to node x, t;, . The t; can be repres-
ented as a discrete summation form or a continuous
integral form such as bell-type and triangular-type.

If there exist (m+ 1) branches by nodes x,;, x,2 -
X,m along a path from node x; to node x;, then

’

the FPT t, is calculated as follows:
e G@G® @

where @ is a fuzzy addition operator. In this way we
can derive every fuzzy FPT from a faulty source node



676

to every affected final sensor node.

For instance ,considering figure 3 with bell-type fuz-
2y FPTs #; and t; respectively which are obtained as
described above , the inter-state pattern(s) can be as-
signed as shown in table 1 according to the time dif-
ference At between two FPTs t'; and t', which are
a-cut points of membership functions z; and e re-
spectively. Simply, as the point p which is the maxi-
mum point of ju( pe in figure 3 draws near to the
peak point of fu =y the inter-state patten ap-
proach to the pattern (S;, Sz) =(*Pu, *Pi2) while as
the point p reach a minimumn point of zero which
also includes a point of larger At’, the inter-state pat-
tern goes near to the point of (S, S)=(*Py, 0.0)
and there may exist more than one inter-state sensor
pattern with the consideration of the transient beh-
avior of the plant if the At is much larger than the
system sampling time and a-cut points are deter-
mined accordingly.

The procedure is identical with the steady-state
case except for the insertion of the inter-state pat-
tem(s) of sensors during the transient for each sour-
ce node. In this case, if any feedforward or feedback
control loop is involved along the paths from a fault
node to the affected sensors, we should be careful in
deciding intersstate patterns among sensors because
the behavior of the control loop may be undeter-
mined in transient.

For the feedback control loop, the controlled vari-
able, especially in case of an abruptly excessive set-
point change, may take an inter-state before settling
to a steady-state. The inter-state can be obtained by
the process operating data or by the simulation using

the fault propagation time and the gain on each bran-

ch of the feedback control loop or by the model of
the control system.

4. Fault Diagnosis
Once the reduced sensor patterns are acquired

from the SDG model by using the data extraction
method, they are used to train the artificial neural
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Fig. 3. Fuzzy FPTs f E2
network(ANN) that runs based on the error

back-propagation algorithm[15]. Specifically, the fault
diagnosis is performed as follows. First, the incipient
faults are diagnosed by recalling the pre-trained ANN
constructed for at each subsystem, and then the spu-
rious faults due to the physical relationship among
the subsystems are removed at the second stage us-
ing inter-related knowledge among the divided sub-
systems and the time sequence of faults-occurrence
of each subsystem as shown in figure 1. The fault
rate of process device (fault candidate) and total FPP
from each candidate of fault origin are used to select
the most probable fault origin from more than one
fault origin candidates at each neural network. Fur-
thermore, the adoption of SDG as a physical medel
can render the explanation of diagnosis results as
does in a conventional expert system.
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4.1. Incipient Faults Diagnosis

The reading of each sensor node is converted into
a nomnalized value using Eq. {2) in a continuous
form rather than in a discrete value. The converted
continuous value of each sensor is utilized as the in-
put to the neural network. The faults diagnosis pro-
cedure for a typical subsystem is as follows:
(1) Train the corresponding ANN using the obtained
“reduced table” as the input-output patterns.
(2) Based on the trained ANN for the subsystem to
be diagnosed, the diagnoses of the faults of pro-
cess devices and the troubled pipe(s) are perfor-

med for the converted values of newly sensed val-

ues.

If there exist several candidates for a fault origin,
ordering of the candidates is performed to select the
most suspected fault origin, based on the fault rate of
each candidate and total FPP from each candidate
to any sensor within the corresponding sensor pat-
tern ; that is, the candidates are ranked according to
the fault rates multiplied by tatal FPPs.

It is quite tedious to train the ANN for the combin-
atorially large number of patterns resulting from mul-
tiple faulty nodes. However, we can observe that the
network trained on a single fault has the ability to di-
agnose multiple faults due to the nonlinear mapping
capability of the network[6]. It is remarked that the
noise from a sensor is also filtered out due to
noise-tolerance capability{13, 14]. Multiple faults in
this paper refer to the collected faults which may be
occurred in more than one subsystemn simultaneously
as well as multiple faults existing in one subsystem.

4.2. Removal of Spurious Faults(RSF)

As mentioned in section 2.1, the spurious faults
should be identified and removed. Since the divided
subsystems may be physically interrelated and the
fault diagnosis is performed at each subsystem inde-

pendently as noted earlier, a fault or faults in a sub-

system can propagate to the adjacent subsystems
and such subsystems are called “fault-affected sub-
systems”. Of course, we should not exclude the pos-
sibility of real faults occurred within the fault-affected
subsystems. It is assumed, however, that nodes mar-
ked with superscript of asterisk are not the real faulty
nodes when they are affected from the faults of the
other subsystems.

Based on (1) the independence in fault(s) diag-
nosis on each subsystem base, (2) the inter-related
knowledge about nodes marked with superscript of
asterisk connecting the adjacent subsystem(s), and
(3) the time information of fault(s) occurrence of
each faulty subsystem, the method of removing the
spurious faults is
described as below:

1) Select the first fault-occurred subsystem.

2) Collect the set F, of faults and the set F of the
nodes marked with superscript of asterisk of the
selected subsystem.

3) Calculate the intersection L=F.NF, The ele-
ments of set I, are the nodes which are declared
as the fault-nodes marked with the superscript of
asterisk.

4) Find the extemal subsystems which are connec-
ted to any element of the set I,

5) Choose the set F.. of the faults detected in all
external subsystems which are found in step 4).

6) Select the set F.. of elements from the set F.,
which are directly connected to any element of
the set I through any unbroken path with
non-zero FPP.

7) Select one element a'€ 1, i€ f(integer) and col-
lect the set {a; of the nodes by back-tracing alon-
g the paths starting from the node ai* and going
back to the elements of the set Fox.

8) Calculate the intersection S ={a}} N Fer

If S=¢ the node a, is not the spurious fault, and
goto step 9).

Here ¢ denotes the empty set.

If S#¢ the node a; is the spurious fault so that
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this node a; is removed from the set F,

9) Repeat the procedure step 8) for the rest of ele-
ments of the set L.
10) Repeat the procedure from step 2) to step 9) for
the rest of the subsystems in the time sequence of
the fault-occurrence.

The above procedure essentially means that, for
each subsystem selected, the nodes marked with the
superscript of asterisk are removed from the declared
faults candidates if they are influenced from the
fault-nodes of the related external subsystems. Fig-

ures 4 and 5 show the overall algorithm for the prop-

osed method.
5. Application and Results

This method is applied for diagnosis of a primary

Calculation of the plant
operation mode
(system structure identifier)

Y
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side in the Kori nuclear power plant unit 2 in korea
under a transient condition with an unit value of FPP
on each branch of the SDG model.

The digraphs of the pressurizer and its connected
systems are drawn with arrows according to their
cause-effect relations as shown in figure 6 and the
names of nodes are listed in Table 2.

The nomal and alarm setpoint values of each sen-
sor of the pressurizer are presented in Table 3.
Each threshold value is determined based on the de-
gree that the operator can be aware of the abnormal
state of each sensor according to the plant character-
istics and the operation condition. The fault patterns
of each component of the pressurizer are shown in
Table 4 in case each source node="+1’, which is
made through the method derived in section 3, the
analysis of the plant operation data, and the simu-
lation from the FISA-2/WS system simulator which is

Division into subsystems
of the whole system

I’

Consuucting the timed SDG
of each subsystem

f—

Exmgg%‘n ?f f:ul:s (:u from Calculation of FTPs
L cach or faults diagnosis of the SDG of each
mﬁgrfc of each subsystem subsystem
« number of layer
« number of neruons | ;I,
for each layer Y
 training rate & .
momentum coefficient Training of extracted {aults data
on cach ANN of each subsystem
.
y

Monitoring the plant status
& collecting plant signals

Y

On-line conversion of SDG
nodcs through the sysicm
structure identifier

@
?

)

No

Yes
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More than one
faulty subsysiem
?

Yes Performing fauli(s) diagnosis

pre-trained ANN

by recalling the corresponding

-Performing fault(s) diagnosis
of faulty subsystems

Calling the Removal of
Spurious Faulis(RSF)
routine

Ll

y

Reporting the result of fault(s)
diagnosis & providing the proper
treatment guide-line

A
Exit

Fig. 4. Overall Algorithm of the Methodology

Table 1. Sensor Patterns of Figure 3

Sensor patterns Source node

S Sz A="+10
+Pn 0.0 Shortly after t;”
+Pn @*P; ' (t{tz’ (inter-state)
+Pu +Py2 after to’

@ : a value between 0 and +1

developed in Korea Advanced Institute of Science
and  TechnologKAIST) and
RETRAN-2 and RELAP5/MOD3 codes. The fault

pattern of a component is more than one since the

verified  with

transient case as well as the steady-state case is con-
sidered. For example, the fault patterns of power
operated relief valve(PORV) 1 or 2 leaking inadver-
tently are the following three patterns in Table 4; (1)
the first pattern is appeared before the effect is reac-

1)

@)

[©]

)

©)

(6)

(O]

®)

()]

10

an

2

[ Removal of Spunious Faults(RSF) routine J

Select the first fault-occurred subsystem |

| €

679

¥
Collect the set Fs of faults &
the set Fs* of super-subscribed node

Y
[ cakeulse beFureer |

Find the exieral subsystems connected
10 any element of Is

Choose the set Fex of faults occured in step 4)]

v

Select the set Fex* connected directly to
any clement of Is

Sclect ai*e s and collect the set (ai*} of the
nodes by back-tracking 10 the elements of Fex*|

Calculate S={ai* }\Fex*

Yes @

No

l Remove the ai* from the Fs

No

End of the search No

of the faulty subsystems
in the sequence of faults
occurrence ?

Go to step 2)

Fig. 5. Removal of Spurious Faults Routine
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——> Positive sign branch

--> Negative sign branch

Secondary System

O Sensor node
D Controller

Fig. 6. Digraph of the Pressurizer and its Connected Systems

hed to the relief tank, (2) the second pattern shows
the state when the fault is spread to the relief tank,
and (3) the third pattemn is for the state when the
pressure and water level can be controlled because
the value of leakage flow is little. The patterns of two
PORV faults are the same because there is only one
temperature sensor that indicates the condition of

the opening of two valves.

The fault patterns are trained using the back-prop-
agation method which is one of the supervised learn-
ing method of the neural networks. The network is
composed with input layer(12 nodes), hidden layer
{65 nodes), and output layer(26 nodes). The number

of nodes in each layer is determined by computer
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Table 2. The Names of Nodes in Figure 6.

NODE NAME NODE NAME
Xy Pressure Xog PRT Pressure
Xz Pressure Sensor X9 PRT Pressure Sensor
X3 Pressure Controller Xao PRT Coolant
X spray Valve Xa1 Rupture Disc
X Spray Line Flow Xa2 Proportional Heater
). 4 Spray Line Tube Xa3 Backup Heater
X7 Spray Line Temp Xaa Level
Xs Spray Line Temp Sensor Xas Level Senosr
Xy PORV1 Xae Level Controller
Xio PORVI Line Flow X37 Charging Valve
Xn PORV2 Xas Charging Flow
Xiz PORV2 Line Flow Xao Charging Line Tube
Xis PORV Temp. X0 Let down Valve
X1a PORV Temp. Sensor Xa Surge Flow
Xis PORV Interlock Valve Xaz Surge Line Temp.
Xie SRV1 Xa3 Surge Line Temp. Sensor
X1z SRV1 Flow Xu Water Temp.
Xig SOV Line Temp. Xas Water Temp. Sensor
X9 SRV1 Line Temp Sensor Xa6 Vapor Temp.
Xa0 SRV2 Xa7 Vapor Temp. Sensor
X SRVZ Flow X Pressure of Coolant System
Xoo SRV2 Line Temp. X, Heat of Collant System
Xos SRV2 Llne Temp. Sensor X3 Heat of Secondary System
Xo4 Pressurizer Relief Tank{PRT) Level Xy Turbine Load
Xas PRT Level Sensor Xs Pressure Sensor of Coolant
26 PRT Temp. Xe Temp. of Coolant
Xo7 PRT Temp. Sensor X7 Temp. Sensor of Coolant

experiments designed to minimize computational

time and achieve suitable classification. The faults di-

agnosis results such as PORV leakage(the second pat-

tern), spray valve over-opening(the 4th pattern), saf-
ety relief valve 1(SRV1) leakage(the 10th pattern),
and surge flow into the pressurizer(the 34th pattern)
are shown in Table 5. The diagnosis results of the
noise pattems are shown in Table 6, Here, the noise
patterns are not realistic but are generated artificially
within 10% in magnitude of the normalized value of
each sensor to verify the sensor noise filtering capa-
bility of the ANN because there is very little noise on
the sensors at the real plant site. As shown in Tables
5and 6, the method using the ANN can find the

faults fast and exactly. It is also possible to use this
method to diagnose the faults of sensors themselves
because their patterns can also be made and trained
(refer to the patterns of the 22th to the 27th row
and the pattemns of the 29th to the 32th row in T-
able 4).

The algorithm of the system-wise fault diagnosis is
applied to the case of decreasing turbine load. When
it occurs, the heat removal by the secondary feedwat-
er is decreased in the steam generator and the surge
flow resulted from increased pressure of the coolant
system is streamed into the pressurizer. The water lev-
el and the pressure of the pressurizer are increased

and the fault is propagated to other devices of the
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Table 3. Sensor Data of Kori Nuclear Power Plant unit
2
Node Normal Alarm Setpoint Threshold
Value - High Low Value
2 2235 2310 2185 20
8 536 5324 2
14 86 1058 10
19 86 1058 10
23 86 1058 10
25 75 85 54 3
27 100 127 10
29 147 23.23 5
**35 60 +5 -5 2
43 6154 5324 10
45 651.7 656.6 3
47 651.7 656.6 3

@ Units are as follows :
Nodes 2, and 29 (Pressure) : psia
Nodes 8, 14, 19, 23, 27, 43, 45, and 47
(Temperature) : °F
Nodes 25, and 35 (Water Level) : %

** Pressurizer Water Level : Function of Average Tempera-
ture of the Coolant System

Level

L) l
%) +5% —~ - High Alarm Setpoint

60 - ——  Water Leve! Programmed

5% Low Alarm Setpoint

25

Thotteg ¥ Teoldeg

pressurizer as depicted in figure 12. The decreasing
turbine load, therefore, causes the pressurizer to be
seen as failed. If the ANN is applied for the sub-
systemn diagnosis when the turbine load is decreasing,
the set F, of the pressurizer faults is {Xu} whose fault
generates the 34th pattern in Table 5. The fault Xy
is affected by Y; of the coolant system{see figure 6).
The fault X4, therefore, is deleted from the set F
and the original fault is not detected in the pressur-
izer. If the method is applied to the coolant system,
the set F, of the subsystem is {Ys}. The fault Y, how-
ever, is also deleted from set the F. of the coolant
system because the fault is affected from the second-
ary system. Finally, the fault Ys, turbine load decreas-

dJ. Korean Nuclear Society, Vol. 27, No. 5, October 1995

ing, is detected in the secondary system. The pro-
cedure discussed in section 4.2 for this case is as fol-
lows: (1) the pressurizer is selected as the first
fault-occurred subsystem, (2) F,={Xy} and F,={Xu},
(3) L={Xy}, (4) extemal subsystem is the coolant
system, (5) Fo={Y3}, (6) Fo={Ya), (7) (X ={Y,
Yz}, {8) S={Y,}. Therefore, X, is removed from the
set F,, and the faults are not discovered in the pres-
surizer. By applying the above procedure to other
subsystemns, the real fault of this situation is found to
be fault Yy(turbine load decreasing) in the end.

6. Conclusions

An improved method based on Chung’s approach
in 1994 [1] for incipient multi-fault diagnosis in real
time is proposed and applied to the real plant. Some
of the merits of the method are:(1) it is capable of
incipient multiple fault diagnosis of large-scale system-
s in real time because the fault diagnosis of a
large-scale system is performed by the diagnosis of
subsystems using the distributed artificial neural net-
works and a knowledge-based system, (2) the met-
hod shows more practical applicability because the
fault diagnosis is performed not only in steady-state
but also in transient-state cases using fuzzy FPT and
FPP on each branch of the SDG model, (3) due to
the use of the physical fault model (SDG model), the
result of the fault diagnosis can be explained in a hig-
hly reliable manner, (4) if there exist several candid-
ates for a fault origin, ordering of the candidates is
performed to select the most suspected fault origin,
based on the fault rate of each candidate and total
FPP from each candidate to any sensor within the
corresponding sensor pattern; that is, the candidates
are ranked according to the fault rates multiplied by
total FPPs,which gives more reliable result on select-
ing fault origin, and(5) this may be used over the
whole system operating range, not at a fixed operat-
ing range via the system structure identifier.
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Table 4. The Fault Patterns of the Pressurizer

INPUTPATTERN FAULT
NODE Xz Xs Xie Xio Xa Xz X X X Xz X Xog

1 -1 1 -1 -1 X9, X11
2 -1 1 1 1 1 -1 -1 X, X1y
3 1 1 1 1 Xo, X11
4 -1 1 -1 -1 Xis

5 -1 1 1 1 1 1 -1 -1 X6

6 1 1 1 1 Xie

7 -1 1 -1 -1 Xao

8 -1 1 1 1 1 1 -1 -1 20

9 1 1 1 1 X0
10 1 Xo, X6, %2, X
11 1 X7
12 1 1 1 1 1 Xz X2
13 1 1 1 X33
14 1 1 1 1 1 1 1 Xa3
15 -1 1 -1 -1 X3, 4
16 -1 X
17 -1 -1 X3
18 1 1 Xa7
19 1 1 1 1 1 1 Xs7, Xa1
20 -1 -1 -1 -1 Xa9, X36
21 -1 Xso
22 1 Xs
23 1 Xia
Xoa 1 Xio
s 1 Xes
26 1 Xes
Xo7 1 Xo7
Xog 1 1 X7
29 1 X9
30 1 Xy3
31 1 X5
32 1 Xy
33 -1 1 -1 -1 -1 Xs
34 1 1 1 1 1 1 1 1 1 Xn

683
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Table 5. The Results of the Pattern 2, 4, 10, 34 (b) Output
Pattern 2 Patten 4 Pattern 10 Pattern 34 Patten 2 Patten 4
X 0.993979 0.002106 0.000000 0.000214 Xo 0.991639 0.007183
Xu 0993130 0.001813 0.000000 0.000342 Xt 0.990631 0.005863
X6 0.007138 0.996342 (.000000 0.000004 X6 0.012563 0.990244
Xe0 0.004411 0.002270 0.000000 0.000001 X20 0.001867 0.006677
X32 0.000517 0.000000 0.995545 0.007061 Xs2 0.000599 0.000000
Xa3 0.000095 0.000000 0.988018 0.000462 Xa3 0.000195 0.000000
X4 0.000955 0.003752 0.000001 0.000000 Xy 0.001421 0.002231
Xs 0.000000 0.000000 0.985692 0.000002 Xs 0.000000 0.000000
Xa1 0.000000 0.000132 0.000765 0.000000 X 0.000000 0.000101
Xa7 0.000033 0.000000 0.003957 0.010687 Xa7 0.000086 0.000000
Xag 0.000011 0.018644 0.000001 0.000000 Xao 0.000005 0.023867
X 0.000000 0.000000 0.999923 0.001681 X2 0.000000 0.000000
Xas 0.000000 0.000000 0.001272 0.000294 Xas 0.000000 0.000000
Xs 0.000000 0.000550 0.004036 0.000001 Xs 0.000000 0.000285
Xia 0.000174 0.000000 0.002581 0.000149 X1a 0.000241 0.000000
X9 0.000000 0.006442 0.003576 0.000000 Xi9- 0.000001 0.001108
Xo3 0.000000 0.000001 0.004160 0.000001 Xo3 0.000000 0.000001
Xos 0.000274 0.003461 0.001597 ©0.000045 Xos 0.000319 0.001927
Xe7 0.000111 0.000605 0.000769 0.000002 Xez 0.000040 0.000531
Xe9 0000412 0.001363 0.000822 0.000046 Xo9 0.000702 0.000602
X3 0.001598 0.000476 0.006473 0.006823 X3 0.002215 0.000410
Xs 0.000018 0.001337 0.000095 0.000000 X5 0.000021 0.001172
Xy7 0.000035 0.002787 0.000021 0.000002 Xy 0.000037 0.002432
Xa 0.001989 0.008432 0.000000 §.000000 X3 0.001289 0.010711
Xs6 0.000000 0.000000 0.002951 0.000000 X36 0.000000 0.000000
Xa1 0005512 0.000000 0.000003 0.989672 Xa1 0.030179 0.000000
Table 6. The Results of the Patterns with Noise
(a) Input Patterns
Input Xz Xs Xie X9 Xz Xz Xv Xo X Xz X Xy
Pattern 2 -09 01 11 01 00 095 09 11 105 005 01 00
Pattern 4 -11 00 01 09 01 001 01 00 00 005 002 01
Nomenclature
A.  threshold value of A
measured value of A AA  measured value of A—nominal value of A
nominal value of A N number of the survived paths in feedforward

A, X: nodes Ai and Xi

control loop
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S
Z

sensor i

state variable i

digraph directed graph

g gain factor from node i to node j

o total gain factor from node i to node j in mul-
ti-path feedforward control

n total number of forward paths in feedforward
control loop

ng, the nomalized absolute gain value with maxi-
mum value of 1 along a path from node i to
node j.

p maximum point of gy N g

Di fault propagation probability from node i to
node j

sign  the total sign which is obtained by multiplying
all signs along the path from the source node
to the final sensor node.

FPT  the total FPT which is obtained by multiplying
all FPTs along the path from the source node
to the final sensor node

t FPT at maximum value of ¢;

tr FPT at maximum value of t;

t fuzzy variable of ¢,

tz fuzzy variable of t;;

t fault propagation time from node i to node j

t fuzzy fault propagation time from node i to
node j

t, total FPT from node i to node j in multi-path
feedforward control loop

At time difference between t; and t2

o sign of the arrow form node i to node j

¢ empty set
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