• Title/Summary/Keyword: 고유 얼굴

Search Result 139, Processing Time 0.023 seconds

Implementing Augmented Reality By Using Face Detection, Recognition And Motion Tracking (얼굴 검출과 인식 및 모션추적에 의한 증강현실 구현)

  • Lee, Hee-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.1
    • /
    • pp.97-104
    • /
    • 2012
  • Natural User Interface(NUI) technologies introduce new trends in using devices such as computer and any other electronic devices. In this paper, an augmented reality on a mobile device is implemented by using face detection, recognition and motion tracking. The face detection is obtained by using Viola-Jones algorithm from the images of the front camera. The Eigenface algorithm is employed for face recognition and face motion tracking. The augmented reality is implemented by overlapping the rear camera image and GPS, accelerator sensors' data with the 3D graphic object which is correspond with the recognized face. The algorithms and methods are limited by the mobile device specification such as processing ability and main memory capacity.

3-D Facial Animation on the PDA via Automatic Facial Expression Recognition (얼굴 표정의 자동 인식을 통한 PDA 상에서의 3차원 얼굴 애니메이션)

  • Lee Don-Soo;Choi Soo-Mi;Kim Hae-Hwang;Kim Yong-Guk
    • The KIPS Transactions:PartB
    • /
    • v.12B no.7 s.103
    • /
    • pp.795-802
    • /
    • 2005
  • In this paper, we present a facial expression recognition-synthesis system that recognizes 7 basic emotion information automatically and renders face with non-photorelistic style in PDA For the recognition of the facial expressions, first we need to detect the face area within the image acquired from the camera. Then, a normalization procedure is applied to it for geometrical and illumination corrections. To classify a facial expression, we have found that when Gabor wavelets is combined with enhanced Fisher model the best result comes out. In our case, the out put is the 7 emotional weighting. Such weighting information transmitted to the PDA via a mobile network, is used for non-photorealistic facial expression animation. To render a 3-D avatar which has unique facial character, we adopted the cartoon-like shading method. We found that facial expression animation using emotional curves is more effective in expressing the timing of an expression comparing to the linear interpolation method.

A Passport Recognition and face Verification Using Enhanced fuzzy ART Based RBF Network and PCA Algorithm (개선된 퍼지 ART 기반 RBF 네트워크와 PCA 알고리즘을 이용한 여권 인식 및 얼굴 인증)

  • Kim Kwang-Baek
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.1
    • /
    • pp.17-31
    • /
    • 2006
  • In this paper, passport recognition and face verification methods which can automatically recognize passport codes and discriminate forgery passports to improve efficiency and systematic control of immigration management are proposed. Adjusting the slant is very important for recognition of characters and face verification since slanted passport images can bring various unwanted effects to the recognition of individual codes and faces. Therefore, after smearing the passport image, the longest extracted string of characters is selected. The angle adjustment can be conducted by using the slant of the straight and horizontal line that connects the center of thickness between left and right parts of the string. Extracting passport codes is done by Sobel operator, horizontal smearing, and 8-neighborhood contour tracking algorithm. The string of codes can be transformed into binary format by applying repeating binary method to the area of the extracted passport code strings. The string codes are restored by applying CDM mask to the binary string area and individual codes are extracted by 8-neighborhood contour tracking algerian. The proposed RBF network is applied to the middle layer of RBF network by using the fuzzy logic connection operator and proposing the enhanced fuzzy ART algorithm that dynamically controls the vigilance parameter. The face is authenticated by measuring the similarity between the feature vector of the facial image from the passport and feature vector of the facial image from the database that is constructed with PCA algorithm. After several tests using a forged passport and the passport with slanted images, the proposed method was proven to be effective in recognizing passport codes and verifying facial images.

  • PDF

Design of ASM-based Face Recognition System Using (2D)2 Hybird Preprocessing Algorithm (ASM기반 (2D)2 하이브리드 전처리 알고리즘을 이용한 얼굴인식 시스템 설계)

  • Kim, Hyun-Ki;Jin, Yong-Tak;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.173-178
    • /
    • 2014
  • In this study, we introduce ASM-based face recognition classifier and its design methodology with the aid of 2-dimensional 2-directional hybird preprocessing algorithm. Since the image of face recognition is easily affected by external environments, ASM(active shape model) as image preprocessing algorithm is used to resolve such problem. In particular, ASM is used widely for the purpose of feature extraction for human face. After extracting face image area by using ASM, the dimensionality of the extracted face image data is reduced by using $(2D)^2$hybrid preprocessing algorithm based on LDA and PCA. Face image data through preprocessing algorithm is used as input data for the design of the proposed polynomials based radial basis function neural network. Unlike as the case in existing neural networks, the proposed pattern classifier has the characteristics of a robust neural network and it is also superior from the view point of predictive ability as well as ability to resolve the problem of multi-dimensionality. The essential design parameters (the number of row eigenvectors, column eigenvectors, and clusters, and fuzzification coefficient) of the classifier are optimized by means of ABC(artificial bee colony) algorithm. The performance of the proposed classifier is quantified through yale and AT&T dataset widely used in the face recognition.

Efficiency Improvement on Face Recognition using Gabor Tensor (가버 텐서를 이용한 얼굴인식 성능 개선)

  • Park, Kyung-Jun;Ko, Hyung-Hwa
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9C
    • /
    • pp.748-755
    • /
    • 2010
  • In this paper we propose an improved face recognition method using Gabor tensor. Gabor transform is known to be able to represent characteristic feature in face and reduced environmental influence. It may contribute to improve face recognition ratio. We attempted to combine three-dimensional tensor from Gabor transform with MPCA(Multilinear PCA) and LDA. MPCA with tensor which use various features is more effective than traditional one or two dimensional PCA. It is known to be robust to the change of face expression or light. Proposed method is simulated by MATALB9 using ORL and Yale face database. Test result shows that recognition ratio is improved maximum 9~27% compared with exisisting face recognition method.

Facial Feature Extraction Using Energy Probability in Frequency Domain (주파수 영역에서 에너지 확률을 이용한 얼굴 특징 추출)

  • Choi Jean;Chung Yns-Su;Kim Ki-Hyun;Yoo Jang-Hee
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.4 s.310
    • /
    • pp.87-95
    • /
    • 2006
  • In this paper, we propose a novel feature extraction method for face recognition, based on Discrete Cosine Transform (DCT), Energy Probability (EP), and Linear Discriminant Analysis (LDA). We define an energy probability as magnitude of effective information and it is used to create a frequency mask in OCT domain. The feature extraction method consists of three steps; i) the spatial domain of face images is transformed into the frequency domain called OCT domain; ii) energy property is applied on DCT domain that acquire from face image for the purpose of dimension reduction of data and optimization of valid information; iii) in order to obtain the most significant and invariant feature of face images, LDA is applied to the data extracted using frequency mask. In experiments, the recognition rate is 96.8% in ETRI database and 100% in ORL database. The proposed method has been shown improvements on the dimension reduction of feature space and the face recognition over the previously proposed methods.

Real-Time Face Recognition System using PDA (PDA를 이용한 실시간 얼굴인식 시스템 구현)

  • Kwon Man-Jun;Yang Dong-Hwa;Go Hyoun-Joo;Kim Jin-Whan;Chun Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.649-654
    • /
    • 2005
  • In this paper, we describe an implementation of real-time face recognition system under ubiquitous computing environments. First, face image is captured by PDA with CMOS camera and then this image with user n and name is transmitted via WLAN(Wireless LAN) to the server and finally PDA receives verification result from the server The proposed system consists of server and client parts. Server uses PCA and LDA algorithm which calculates eigenvector and eigenvalue matrices using the face images from the PDA at enrollment process. And then, it sends recognition result using Euclidean distance at verification process. Here, captured image is first compressed by the wave- let transform and sent as JPG format for real-time processing. Implemented system makes an improvement of the speed and performance by comparing Euclidean distance with previously calculated eigenvector and eignevalue matrices in the learning process.

Action Unit Based Facial Features for Subject-independent Facial Expression Recognition (인물에 독립적인 표정인식을 위한 Action Unit 기반 얼굴특징에 관한 연구)

  • Lee, Seung Ho;Kim, Hyung-Il;Park, Sung Yeong;Ro, Yong Man
    • Annual Conference of KIPS
    • /
    • 2015.04a
    • /
    • pp.881-883
    • /
    • 2015
  • 실제적인 표정인식 응용에서는 테스트 시 등장하는 인물이 트레이닝 데이터에 존재하지 않는 경우가 빈번하여 성능 저하가 발생한다. 본 논문에서는 인물에 독립적인(subject-independent) 표정인식을 위한 얼굴특징을 제안한다. 제안방법은 인물에 공통적인 얼굴 근육 움직임(Action Unit(AU))에 기반한 기하학 정보를 표정 특징으로 사용한다. 따라서 인물의 고유 아이덴티티(identity)의 영향은 감소되고 표정과 관련된 정보는 강조된다. 인물에 독립적인 표정인식 실험결과, 86%의 높은 표정인식률과 테스트 비디오 시퀀스 당 3.5ms(Matlab 기준)의 매우 빠른 분류속도를 달성하였다.

Design of a User authentication Protocol Using Face Information (얼굴정보를 이용한 사용자 인증 프로토콜 설계)

  • 지은미
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.1
    • /
    • pp.157-166
    • /
    • 2004
  • Consequently substantial research has been done on the development of the bio-metric recognition method as well as technical research in the field of authentication. As a method of bio-metric recognition, personal and unique information such as fingerprints, voice, face, Iris, hand-geometry and vein-pattern are used. The face image system in bio-metric recognition and information authentication reduces the denial response from the users because it is a non-contact system the face image system operates through a PC camera attached to a computer base this makes the system economically viable as well as user friendly. Conversely, the face image system is very sensitive to illumination, hair style and appearance and consequently creates recognition errors easily, therefore we must build a stable authentication system which is not too sensitive to changes in appearance and light. In this study, I proposed user authentication protocol to serve a confidentiality and integrity and to obtain a least Equal Error Rate to minimize the wrong authentication rate when it authenticates the user.

  • PDF

Automatic Denoising of 2D Color Face Images Using Recursive PCA Reconstruction (2차원 칼라 얼굴 영상에서 반복적인 PCA 재구성을 이용한 자동적인 잡음 제거)

  • Park Hyun;Moon Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.2 s.308
    • /
    • pp.63-71
    • /
    • 2006
  • Denoising and reconstruction of color images are extensively studied in the field of computer vision and image processing. Especially, denoising and reconstruction of color face images are more difficult than those of natural images because of the structural characteristics of human faces as well as the subtleties of color interactions. In this paper, we propose a denoising method based on PCA reconstruction for removing complex color noise on human faces, which is not easy to remove by using vectorial color filters. The proposed method is composed of the following five steps: training of canonical eigenface space using PCA, automatic extraction of facial features using active appearance model, relishing of reconstructed color image using bilateral filter, extraction of noise regions using the variance of training data, and reconstruction using partial information of input images (except the noise regions) and blending of the reconstructed image with the original image. Experimental results show that the proposed denoising method maintains the structural characteristics of input faces, while efficiently removing complex color noise.