• Title/Summary/Keyword: 고유치 문제

Search Result 193, Processing Time 0.039 seconds

Eigenvalue Analysis of a Membrane Using the Multiscale Adaptive Wavelet-Galerkin Method (멀티스케일 적응 웨이블렛-갤러킨 기법을 이용한 박막 고유치 문제 해석)

  • Yi, Yong-Sub;Kim, Yoon-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.251-258
    • /
    • 2004
  • Since the multiscale wavelet-based numerical methods allow effective adaptive analysis, they have become new analysis tools. However, the main applications of these methods have been mainly on elliptic problems, they are rarely used for eigenvalue analysis. The objective of this paper is to develop a new multiscale wavelet-based adaptive Galerkin method for eigenvalue analysis. To this end, we employ the hat interpolation wavelets as the basis functions of the finite-dimensional trial function space and formulate a multiresolution analysis approach using the multiscale wavelet-Galerkin method. It is then shown that this multiresolution formulation makes iterative eigensolvers very efficient. The intrinsic difference-checking nature of wavelets is shown to play a critical role in the adaptive analysis. The effectiveness of the present approach will be examined in terms of the total numbers of required nodes and CPU times.

Eigenvalue and Frequency Response Analyses of a Hard Disk Drive Actuator Using Reduced Finite Element Models (축소된 유한요소모델을 이용한 하드디스크 구동부의 고유치 및 주파수응답 해석)

  • Han, Jeong-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.541-549
    • /
    • 2007
  • In the case of control for mechanical systems, it is highly useful to be able to provide a compact model of the mechanical system to control engineers using the smallest number of state variables, while still providing an accurate model. The reduced mechanical model can then be inserted into the complete system models and used for extended system-level dynamic simulation. In this paper, moment-matching based model order reductions (MOR) using Krylov subspaces, which reduce the number of degrees of freedom of an original finite element model via the Arnoldi process, are presented to study the eigenvalue and frequency response problems of a HDD actuator and suspension system.

A Solute Transport Analysis around Underground Storage Cavern by using Eigenvalue Numerical Technique (고유치 수치기법을 이용한 지하저장공동 주위의 용질이동해석)

  • Chung, Il-Moon;Kim, Ji-Tae;Cho, Won-Cheol;Kim, Nam-Won
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.381-391
    • /
    • 2008
  • The eigenvalue technique is introduced to overcome the problem of truncation errors caused by temporal discretization of numerical analysis. The eigenvalue technique is different from simulation in that only the space is discretized. The spatially discretized equation is diagonized and the linear dynamic system is then decoupled. The time integration can be done independently and continuously for any nodal point at any time. The results of eigenvalue technique are compared with the exact solution and FEM numerical solution. The eigenvalue technique is more efficient than the FEM to the computation time and the computer storage in the same conditions. This technique is applied to the solute transport analysis in nonuniform flow fields around underground storage caverns. This method can be very useful for time consuming simulations. So, a sensitivity analysis is carried out by using this method to analyze the safety of caverns from nearly located contaminant sources. According to the simulations, the reaching time from source to the nearest cavern may takes 50 years with longitudinal dispersivity of 50 m and transversal dispersivity of 5 m, respectively.

Natural Frequency of L-type Folded Plate (L-형 절곡판의 고유진동수 해석)

  • Lee, Kil-Woo;Chung, Kang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.3
    • /
    • pp.100-108
    • /
    • 1989
  • The frequency equation and numerical process of natural frequencies for several boundary conditions of L-type folded plate given to the different thickness and lenth are derived by using Rayleigh-Ritz method in this study. Those natural frequencies are attaind by choosing the proper eigenfunction for boundary conditions of x-direction and y-direfction beams, by considering the convergence of numerical results.

  • PDF

Free Oscillation Analysis in the Coastal Area using Integrated Finite Difference Method (적분차분법을 이용한 연안역에서의 해수고유진동해석)

  • LEE Byung-Gul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.6
    • /
    • pp.782-786
    • /
    • 1994
  • Integrated finite difference method (IFDM) is used to solve one dimensional free oscillation problem in the coastal area. To evaluate the solution accuracy of IFDM in free oscillation analysis, two finite difference equations based on area discretization method and point discretization method are derived from the governing equations of free oscillation, respectively. The difference equations are transformed into a generalized eigenvalue problem, respectively. A numerical example is presented, for which the analytical solution is available, for comparing IFDM to conventional finite difference equation (CFDM), qualitatively. The eigenvalue matrices are solved by sub-space iteration method. The numerical results of the two methods are in good agreement with analytical ones, however, IFDM yields better solution than CFDM in lower modes because IFDM only includes first order differential operator in finite difference equation by Green's theorem. From these results, it is concluded that IFDM is useful for the free oscillation analysis in the coastal area.

  • PDF

Efficient Implementation of an Extreme Eigenvalue Problem on Cray T3E (Cray T3E에서 극한 고유치문제의 효과적인 수행)

  • 김선경
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.480-483
    • /
    • 2000
  • 공학의 많은 응용분야에서 큰 회소 행렬(Large Sparse Matrices)에 대한 가장 작거나 또는 가장 큰 고유치(Eigenvalues)들을 요구하게 되는데, 이때 많이 이용되는 것은 Krylov Subspace로의 Projection방법이다. 대칭 행렬에 대해서는 Lanczos방법을, 비대칭 행렬에 대해서는 Biorhtogonal Lanczos방법을 이용할 수 있다. 이러한 기존의 알고리즘들은 새롭게 제안되는 병렬처리 시스템에서 효과적이지 못하다. 많은 프로세서를 가지는 병렬처리 컴퓨터 중에서도 분산 기억장치 시스템(Distributed Memory System)에서는 프로세서들 사이의 Data Communication에 필요한 시간을 줄이도록 해야한다. 본 논문에서는 기존의 Lanczos 알고리즘을 수정함으로써, 알고리즘의 동기점(Synchronization Point)을 줄이고 병렬화를 위한 입상(Granularity)을 증가시켜서 MPP인 Cray T3E에서 Data Communication에 필요한 시간을 줄인다. 많은 프로세서를 사용하는 경우 수정된 알고리즘이 기존의 알고리즘에 비해 더 나은 speedup을 보여준다.

  • PDF

Numerical Analysis of Lightwave Modes in GRIN Optical Fibers by Using Eigenvalue (고유치를 이용한 GRIN 광섬유 내에서의 광파모드의 해석)

  • Sohn, Young-Ho
    • Convergence Security Journal
    • /
    • v.8 no.4
    • /
    • pp.153-159
    • /
    • 2008
  • Graded-Index Multimode Optical fibers have recently received a lot of attention as regards their application and lightwave behavior in relation to broadband communication links. Accordingly, this aticle presents a novel lightwave mode analysis that solves the wave equation using a numerical analysis based on an eigenvalue problem method, thereby avoiding the typical complicated Bessel function method. Angular depedences and number of modes were observed as well. Future research implications will be possibly noticed such areas as bending effects and mode coupling analyses thru this research.

  • PDF

A Study on the Eigenvalue Problems of Partially Fixed End Members with Intermediate Elastic Supports (중간탄성지점이 있는 부분고정단 압축재의 고유치 문제에 관한 연구)

  • 김순철;문연준;이수곤
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.297-305
    • /
    • 1998
  • The finite element method is used for the study of the eigenvalue problems of partially fixed end beams with intermediate elastic supports. The elastic critical loads and natural frquencies of the beams are investigated by changing the numbers of elastic supports and their stiffness, and also by changing Kinney's fixity factor, $f_a$. The relationship between two eigenvalues is established by calculating the corresponding values of $(w/w_n)^2$ through changing $(P/P_{cr})$ values. The results of this study are as follows : (1) The elastic critical loads and natural frequencies of beams increase with increases in Kinney's fixity factor, $f_a$ and with the increased numbers of intermediate elastic supports. (2) The relationship between elastic critical loads and the natural frequencies of partially fixed end beams with intermediated elastic supports is $P/P_{cr} + (w/w_n)^2/ = 1$ without regard to Kinney's fixity factor, the stiffness of elastic supports, or the number of elastic supports.

  • PDF

Model Analysis of R/C Framed Structures to Earthquake Excitations (지진하중을 받는 철근콘크리트 골조 구조물의 모드 해석)

  • 장극관;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.3
    • /
    • pp.180-189
    • /
    • 1994
  • An approximate method of normal coordinate idealization for use in nonlinear R /C frames has been developed. Normal coordinate apporaches have been used for nonlinear problems in the past, but they are not recerved wide acceptance because of the need for eigenvector computation in each time step. The proposed method circumvents the eigenvector recalculation problem by evaluating a limited number of sets of mode shapes in performing the dynamic analysis. Then some of the predetermined sets of eigenvectors are used in the nonlinear dynamic repeatedly. The method is applied to frame structures with ductile R /C elements. The plastic hinge zones are modeled with hysteres~s loops which evince degrading stiffness and pinching effects. Effxiencies and accuracies of the method for this application are presented.