• Title/Summary/Keyword: 고온용 고분자 전해질 막 연료전지

Search Result 9, Processing Time 0.025 seconds

Development of Polymer Electrolyte Membranes Using Dipole-dipole Interaction for Fuel Cell Applications (쌍극자-쌍극자 상호작용 형성을 이용한 향상된 기능의 연료전지용 고분자 전해질 막의 개발)

  • Won, Mihee;Kwon, Sohyun;Kim, Tae-Hyun
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.5
    • /
    • pp.413-422
    • /
    • 2015
  • Proton exchange membrane (PEM), which transfers proton from the anode to the cathode, is the key component of the proton exchange membrane fuel cell (PEMFC). Nafion is widely used as PEM due to its high proton conductivity as well as excellent chemical and physical stabilities. However, its high cost and the environmental hazards limit the commercial application in PEMFCs. To overcome these disadvantages, various alternative polymer electrolytes have been investigated for fuel cell applications. We used densely sulfonated polymers to maximize the ion conductivity of the corresponding membrane. To overcome high swelling, dipole-dipole interaction was used by introducing nitrile groups into the polymer backbone. As a result, physically-crosslinked membranes showed improved swelling ratio despite of high water uptake. All the membranes with different hydrophilic-hydrophobic compositions showed higher conductivity, despite their lower IEC, than that of Nafion-117.

A Study on Organic/Inorganic Composite Membrane for Low humidity and High Temperature Polymer Electrolyte Membrane Fuel Cells (저가습 고온 고분자 연료전지용 유-무기 복합막에 관한 연구)

  • Choi, Young-Woo;Kim, Mi-Nai;Lim, Sung-Dae;Park, Seok-Hee;Yoon, Young-Gi;Yang, Tae-Hyun;Kim, Chang-Soo;Nam, Ki-Sook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.135.1-135.1
    • /
    • 2010
  • 최근 고온에서 사용 가능한 PEMFC용 고분자전해질 막 개발에 대한 연구가 활발히 진행되고 있다. PEMFC가 고온에서 작동하게 되면 높은 성능과 많은 장점을 갖게 된다. PEMFC를 $100^{\circ}C$ 이상에서 운전하게 될 경우 백금 전극 반응을 향상시켜 고가의 백금 촉매 양을 줄일 수 있게 되고, 수소연료 속에 미량 포함된 CO에 의한 촉매표면 피독현상에 대한 내구성을 높일 수 있어 저 순도 수소연료 사용이 가능해 진다. 또한 가습장치와 수소 연료 개질장치의 부피를 줄일 수 있게 되어 전체적인 PEMFC 시스템이 단순화 된다. 현재 연료전지용 고분자 전해질막으로 DuPont사의 과-불소계 고분자 전해질막인 Nafion$^{(R)}$이 가장 널리 사용되고 있다. Nafion$^{(R)}$은 유연한 분자구조 안에 소수성이 강한 주사슬과 친수성을 나타내는 술폰산이 결합된 곁사슬이 존재하여 술폰화 곁사슬의 클러스터 둘레에는 친수성 영역이 형성이 되기때문에 소수/친수 상 분리가 잘되어 이온 클러스터 형성이 용이하지만 제조비용이 높은 단점을 갖고 있다. 특히, 전해질 막내에서 Bronsted base 역할을 하는 물에 의해 이온전도가 이루어지기 때문에 고온에서는 수분증발로 인해 성능이 급격히 감소된다. 따라서, 본 연구에서는 고온 저가습 조건에서 운전이 가능하고 Nafion이 갖는 문제점을 해결하고자, 내열특성이 뛰어나며 높은 수소이온 전도도 학보가 용이한 Sulfonated Poly(aryl ether)sulfone(SPAES) 고분자 전해질에, 고온에서도 수화성이 유지될 수 있도록 지르코니아를 황산화한 sulfated zirconia(s-$ZrO_2$)를 함침하여 복합 고분자전해질막을 제조하여 고온 저가습 조건에서의 수소이온 전도 특성에 관한 연구를 수행하였다. 개발된 막의 물리/화학적 특성은 water content(Wup%), 이온교환 용량(IEC, meq $g^{-1}$), 수소이온전도도(s $cm^{-1}$) 열 중량 분석(TGA), X선 회절분석(XRD) 등을 통하여 분석 및 관찰하였다. 내화학 및 열적 특성분석 결과, 황산화 반응공정으로 $ZrO_2$에 술폰산기가 안정적으로 결합하고 있음이 관찰되었으며, 본 연구에서 개발된 유 무기 복합막이 $250^{\circ}C$이상 열적안정성을 확보하고 있는 것으로 판단되었다. $100^{\circ}C$ 이하의 저온 영역에서, 일정 비율의 s-$ZrO_2$/SPAES막에서 이온교환용량(IEC)이 순수 SPAES 막보다 낮음에도 불구하고, water uptake가 증가함과 동시에 수소이온 전도도가 향상된 것을 관찰하였다. 또한, 고온에서는 수소이온이 자유롭게 이동할 수 있는 water channel을 형성하는 free water는 증발 하지만 s-$ZrO_2$와 SPAES의 술폰산기 사이에 강력하게 결합하고 있는 bound Water는 $100^{\circ}C$ 이상의 고온 영역에서도 존재하여, 비록 무가습 조건에서도 일정 비율의 s-$ZrO_2$/SPAES50 전해질 막의 경우, 높은 전도도를 나타냄을 관찰할 수 있었다. 따라서 본 연구를 통해 저가습 고온 적용을 목적으로 개발된 s-$ZrO_2$/SPAES50막은 우수한 내열 특성을 나타냄과 동시에 저가습 고온 영역($120^{\circ}C$, $50RH{\downarrow}$)에서 높은 수소이온 전도도를 유지하여, 고온 저가습 연료전지 운전에 적합할 것으로 사료된다.

  • PDF

Current Patents and Papers Research Trend of Fuel Cell Membrane (특허 및 논문 게재 분석을 통한 연료전지용 전해질막의 연구동향)

  • Woo, Chang Hwa
    • Membrane Journal
    • /
    • v.26 no.6
    • /
    • pp.407-420
    • /
    • 2016
  • The fuel cell technology as a green energy source has been actively studied to solve energy shortages and pollution problems. The generating efficiency of fuel cell is high because the electricity is directly produced by using hydrogen and oxygen and the additional power generator is not needed. The key technology is the manufacturing process of polymer electrolyte membranes for polymer electrolyte membrane fuel cell (PEMFC) system. The Nafion, perfluoro-based polymeric membrane is mainly used as a polymer electrolyte membrane. However, the Nafion is expensive and rapidly decreases the performance of Nafion at high temperature. So, many researchers are lively studying new alternative electrolyte membranes. In this review, through the technology competitiveness evaluation of patents and papers, the frequencies of presentation are filed by country, institution and company. In addition, polymer electrolyte membrane fuel cell, direct methanol fuel cell and alkaline fuel cell are also filed.

A New Preparation Method of Nafion/Mordenite Composite Membrane for Polymer Electrolyte Membrane Fuel Cell above 100℃ Operation (100℃ 이상에서 작동하는 고분자 전해질형 연료전지용 나피온/Mordenite 복합체 막의 새로운 제조 방법)

  • 곽상희;양태현;김창수;윤기현
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.159-166
    • /
    • 2003
  • The preparation method for composite membranes of high temperature operation above $100^{\circ}C$ for Polymer Electrolyte Membrane Fuel Cells (PEMFCs ) was presented, using perfluorosulfonylfluoride Nafion resin and mordenite, in addition to the physical properties, proton conductivity and single cells performance for it. The composite membranes were fabricated via melting of Nafion resin with various mordenite content. As the increase of mordenite content, at high temperature range, proton conductivity of the composite membrane increased due to the late dehydration rate of existent water in the mordenite. Also, from the result of the current-voltage relationship for single cells under $130^{\circ}C$ operation condition, the composite membrane cell with l0 wt% mordenite content showed better performance than that of the others over the entire current density range. This result indicated that the existent water in the composite membrane with l0 wt% mordenite content was higher than that with the others, thereby maintains its conductivity. Based upon the results of experiments, therefore, a Nafion/mordenite composite membrane prepared by this work is thought to be a satisfactory polymer electrolyte membrane for PEMFC operation above $100^{\circ}C$.

Research Trend of Organic/Inorganic Composite Membrane for Polymer Electrolyte Membrane Fuel Cell (고분자 전해질 연료전지용 유.무기 복합막의 연구개발동향)

  • Kim, Deuk Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.22 no.3
    • /
    • pp.155-170
    • /
    • 2012
  • Fuel cells have been considered as alternative power generation system in the twenty-first century because of eco-friendly system, high power density and efficiency compare with petroleum engine system. Proton exchange membranes (PEMs) are the key components in fuel cell system. Currently, Nafion has been used in fuel cell system. However, Nafion has disadvantages such as low conductivity at high temperature and high cost. The researchers have focused to reach the high properties such as high proton conductivity, low permeability to fuel, good chemical/thermal stability, good mechanical properties and low manufacturing cost. Various methods have been developed for preparation of proton exchange membrane with high performance and commercialization of fuel cell system. The hybrid organic/inorganic membrane has the potentials to provide a unique combination of organic and inorganic properties with improved proton conductivity and mechanical property at high temperatures. So, this paper presents an overview of research trend for the composite membranes prepared by organic/inorganic system using various inorganic materials.

Research Trends of Polybenzimidazole-based Polymer Electrolyte Membranes for High-temperature Polymer Electrolyte Membrane Fuel Cells (고온 구동형 고분자 전해질 막 연료전지용 폴리벤즈이미다졸계 고분자 전해질 막의 개발 동향)

  • HyeonGyeong, Lee;Gabin, Lee;Kihyun, Kim
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.442-455
    • /
    • 2022
  • High-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) has been studied as an alternative to low-temperature PEMFC due to its fast activation of electrodes and high resistance to electrode poisoning by carbon monoxide. It is highly required to develop stable PEMs operating at high temperatures even doped by ion-conducting materials for the development of high-performance and durable HT-PEMFC systems. A number of studies have been conducted to develop polybenzimidazole (PBI)-based PEMs for applications in HT-PEMFC due to their high interaction with doped ion-conducting materials and outstanding thermomechanical stability under high-temperature operation. This review focused on the development of PBI-based PEMs showing high performance and durability. Firstly, the characteristic behavior of PBI-based PEMs doped with various ion-conducting materials including phosphoric acid was systematically investigated. And then, a comparison of the physicochemical properties of the PEMs according to the different membrane manufacturing processes was conducted. Secondly, the incorporation of porous polytetrafluoroethylene substrate and/or inorganic composites to PBI matrix to improve the membrane performances was studied. Finally, the construction of cross-linked structures into PBI-based PEM systems by polymer blending method was introduced to improve the PEM properties.

Developement of a PEFC electrodes under the high temperature and low humidified conditions (고온/저 가습 운전을 위한 고분자 전해질 연료전지용 전극 개발)

  • Ryu, Sung-Kwan;Choi, Young-Woo;Park, Jin-Soo;Yim, Sung-Dae;Yang, Tae-Hyun;Kim, Han-Sung;Kim, Chang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.149-149
    • /
    • 2009
  • Generally, Nafion ionomer is used in the polymer electrolyte fuel cell (PEFC) electrodes to achieve high power density. At the high temperature operation of PEFC, however, ionic conductivity of Nafion remarkably decreased due to the evaporation of water in Nafion polymer. Recently, many researchers have focused on using the Ionic Liquids(ILs) instead of water in Nafion polymer. ILs have intrinsic properties such as good electrochemical stability, high ionic conductivity, and non-flammability. Especially, ILs play a crucial role in proton conduction by the Grottuss mechanism and act as water in water-free Nafion polymer. However, it was found that the ILs was leached out of the polymer matrix easily. In this study, we prepared membrane electrode assemblies with various contents of ILs. The effect of ILs in the electrode of each designed was investigated by a cyclic voltammetry measurement and the cell performance obtained through a single cell test using H2/Air gases. Electrodes with different contents of ILs in catalyst layer were examined at high temperature and low humidified condition.

  • PDF

Synthesis and Characterization of Phosphoric Acid-doped Poly (2,5-benzimidazole) Membrane for High Temperature Polymer Electrolyte Membrane Fuel Cells (고온 고분자 연료전지용 인산 도핑 폴리(2,5-벤지이미다졸) 막의 제조 및 특성)

  • Nguyen, Thi Xuan Hien;Mishra, Ananta Kumar;Choi, Ji-Sun;Kim, Nam-Hoon;Lee, Joong-Hee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.1
    • /
    • pp.26-33
    • /
    • 2012
  • Phosphoric acid-doped poly (2,5-benzimidazole) (DABPBI) was prepared by condensation polymerization of 3,4-diaminobenzoic acid for high temperature proton electrolyte membrane fuel cells. The membranes were casted directly using a hot-press unit and characterized by fourier transform infrared spectroscopy, thermogravimetric analysis, conductivity measurement, scanning electron microscopy and tensile test. The proton conductivities of DABPBI are observed to be 0.062 and 0.018 $S{\cdot}cm^{-1}$ under 30 and 1% relative humidity, respectively at a temperature of $120^{\circ}C$ which is appreciably higher than that of Nafion 115 under similar conditions. The DABPBI membrane has demonstrated excellent thermo- mechanical properties and proton conductivity suggesting its suitability as a high temperature membrane.

Characterization of Nafion/Poly(ether(amino sulfone)) Acid-base Blend Polymer Electrolyte Membranes for Direct Dimethyl Ether Fuel Cell (Nafion/poly(ether(amino sulfone)) 산-염기 블렌드 전해질막을 이용한 디메틸 에테르 직접연료전지 특성연구)

  • Park Sun-Mi;Choi Won-Choon;Nam Seung-Eun;Lee Kew-Ho;Oh Se-Young;Lee Chang-Jin;Kang Yong-Ku
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.2
    • /
    • pp.89-94
    • /
    • 2006
  • Nafion/poly(ether(amino sulfone)) acid-base blend polymer electrolyte membranes were prepared and their proton conductivity and dimethyl ether permeability were investigated. Characteristics of direct dimethyl ether fuel cell (DDMEFC) performance using prepared blend membrane were studied. The increase of amine groups in the base polymer in composite membranes resulted in the decrease in dimethyl ether permeability. The proton conductivity of the blend membranes gradually increased as increasing temperature. The conductivity of Nafion/PEAS-0.6 (85:15) blend membranes was measured to be $1.42\times10^{-2}S/cm\;at\;120^{\circ}C$ which was higher than that of the recast Nafion. The performance of direct dimethyl ether fuel cell (DDMEFC) using the Nafion/PEAS blend membranes was higher than that using $Nafion^(R)115$ membrane. Enhanced performance of direct dimethyl ether fuel cells using Nafion/PEAS blend membrane was explained by reducing dimethyl ether (DME) crossover through the electrolyte membrane and maintenance of the proton conductivity at high temperature.