• Title/Summary/Keyword: 고온내성

Search Result 75, Processing Time 0.031 seconds

Overexpression of an oligopeptide transporter gene enhances heat tolerance in transgenic rice (Oligopeptide transporter 관여 유전자 도입 형질전환벼의 고온스트레스 내성 증진)

  • Jeong, Eun-Ju;Song, Jae-Young;Yu, Dal-A;Kim, Me-Sun;Jung, Yu-Jin;Kang, Kwon Kyoo;Park, Soo-Chul;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • v.44 no.3
    • /
    • pp.296-302
    • /
    • 2017
  • Rice (Oryza sativa) cultivars show an impairment of growth and development in response to abiotic stresses such as drought, salinity, heat and cold at the early seedling stage. The tolerance to heat stress in plants has been genetically modulated by the overexpression of heat shock transcription factor genes or proteins. In addition to a high temperature-tolerance that has also been altered by elevating levels of osmolytes, increasing levels of cell detoxification enzymes and through altering membrane fluidity. To examine the heat tolerance in transgenic rice plants, three OsOPT10 overexpressing lines were characterized through a physiological analysis, which examined factors such as the electrolyte leakage (EL), soluble sugar and proline contents. We further functionally characterized the OsOPT10 gene and found that heat induced the expression of OsOPT10 and P5CS gene related proline biosynthesis. It has been suggested that the expression of OsOPT10 led to elevated heat tolerance in transgenic lines.

Production of Intracellular Invertase from Alkalophilic and Thermophilic Bacillus sp. TA-11 in the Recombinant E. coli (재조합 대장균에서 호알칼리성,고온성 Bacillus sp. TA-11의 세포내 Invertase의 생산)

  • Yi, Sung-Hun;Lee, Dae-Hyung;No, Jae-Duck;Lee, Jae-Won;Lee, Jong-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.4
    • /
    • pp.318-322
    • /
    • 2006
  • The intracellular invertase gene of alkalophilic and thermophilic Bacillus sp. TA-11 which was isolated from compost was cloned and expressed in E. coil HB101 using pUC19 as a vector. The invertase of the recombinant E. coli (pYC 17) was maximally produced when it was incubated at 37$^{\circ}C$ for 9 h in a SY medium containing 0.25% sucrose, 0.5% yeast extract, 0.1% each of $K_2HPO_4$ and $KH_2PO_4$, with an initial pH of 8.0. The final enzyme activity under the above condition was 47.7 U per ml of cell-free extract.

Gene Expression and Response of Arabidopsis AtSIZ3 Mutants to Temperature and Drought Stress (애기장대 AtSIZ3 변이형의 온도 및 건조 스트레스에 대한 반응과 유전자 발현)

  • Kwon, Soon-Tae;Jeong, Hyung-Jin;Hasegawa, Paul M.
    • Korean Journal of Plant Resources
    • /
    • v.23 no.1
    • /
    • pp.25-30
    • /
    • 2010
  • This study was carried out to understand the effect of low temperature($4^{\circ}C$), heat shock($37^{\circ}C$) and drought stresses on the growth and gene expression of Arabidopsis ATSIZ3(at1g08910) mutants. The seedling growth of SIZ3-mutants were markedly inhibited by the treatment of heat shock or chilling stresses. However, there was no significant differences between wild type and SIZ3-mutants in seeding fresh weight. As compared to wild type plants, SIZ3-mutants showed 63.9% inhibition of seedling fresh weight by the treatment of 10 days drought stress, suggesting that SIZ3 is involved in the resistance of Arabidopsis to drought stress. Base on RT-PCR analysis, expression of SIZ3 mRNA in the wild type showed 20% inhibition by chilling stress, 3.7 and 4.5 fold increase by the treatment of heat shock or drought stresses, respectively.

Study on Low Temperature Tolerant Methane-Producing Bacteria for the Treatment of Agricultural and Livestock Wastes (농축산(農畜産) 폐기물(廢棄物) 처리(處理)를 위(爲)한 저온내성(低溫耐性) 메탄 생성균(生成菌)의 특성(特性)에 관(關)한 연구(硏究) 1. 저온조건(低溫條件)에서 시료별(試料別) 메탄 생성기작(生成機作) 연구(硏究))

  • Jung, Kwang-Yong;Kim, Jai-Joung
    • Korean Journal of Environmental Agriculture
    • /
    • v.12 no.1
    • /
    • pp.41-49
    • /
    • 1993
  • The Study was conducted to develope the low temperature tolerant methane-producing bacteria(LTTB) and to increase the efficiency of anaerobic fermentation for the treatment of agricultural and livestock wastes at low temperature. The samples were collected from muddy soil, water logged sediment, organic layer and anaerobic sludge at three latitudes, $34.8{\sim}37.4\;^{\circ}N(Korea)$, $41.4\;^{\circ}N(USA)$ and $54.5{\sim}56.9\;^{\circ}N(Canada)$. They were used for determination of the methanogenesis rates for isolation and identification of the LTTB. The methanogenesis rate of smaples at low temperature were higher in the cellulose medium than methanol medium. The methanogenesis rate in the samples of subarctic region were $15{\sim}19$ moles/ml during 30 days at low temperature($8\;^{\circ}C$), whereas not detected in the samples of temperate region. The methanogenesis rate in the enrichment culture of subarctic samples were inhibited by the $40\;{\mu}g/ml$ of streptomycin + vancomycin or ampicillin + oleandomycin which were not effect to the methanogens. An inhabitation of high temperature tolerant methane producing bacteria was identified in the samples of temperate region, whereas that of the LTTB growing at $8{\sim}13^{\circ}C$ was identified in the subarctic region.

  • PDF

Fermentation Characteristics of Wine Yeast Strains (포도주 양조용 효모의 발효특성)

  • Seoktae Jeong;Nami Goto;Park, Jonguck
    • Food Science and Preservation
    • /
    • v.8 no.3
    • /
    • pp.320-325
    • /
    • 2001
  • In fermentation characteristics, R2 was suitable for fast start and fermentation, while UCD530 was tool suitable far complete fermentation at 25$^{\circ}C$. T73 and AC- strains produced much more total acid compared to other strains and it was concerned with producing large amount of succinic acid and acetic acid. OC-2, UCD530, Beaujolais, and BC strains revealed low fermentation efficiency (below 62.0%), but EC1118, RC212, T73 and BM45 strains showed opposit result (above 70.0%). D254 and Wadenswil 27 seemed to have excellent cohesive ability because these two yeast strains made somewhat hard precipitation at the bottom after complete fermentation. T73 and CEG gave higher amounts of acetic acid (above 630 mg/L), while UCD530, W-3 and Beaujolais recorded low concentration (below 200 mg/L). In sulfur dioxide tolerance, preferable culturing temperature and times were 25$^{\circ}C$ and 72 hr respectively. The strains R2, BM45 and L2056 revealed high sulfur dioxide tolerance (above 30mg/L), white 71B, Wadenswil 27 and Beaujolais showed the opposite result (below 5mg/L)

  • PDF

Control Efficacy of Controlled Atmosphere and Temperature Treatment System Against the Hawthorn Spider Mite, Tetranychus viennensis (환경조절열처리 기술을 이용한 벚나무응애(Tetranychus viennensis) 살비 효과)

  • Son, Ye-Rim;Lee, Jong-Ho;Kim, Yong-Gyun
    • Korean journal of applied entomology
    • /
    • v.51 no.2
    • /
    • pp.131-140
    • /
    • 2012
  • The hawthorn spider mite, Tetranychus viennensis, is a pest of apples and a quarantine pest from some countries that import apples from Korea. A controlled atmosphere and temperature treatment system (CATTS) was developed as an alternative disinfestation method to methyl bromide fumigation treatment, and has been applied to control various insects and other arthropod pests on fruits. We applied CATTS to disinfect T. viennensis under conditions that were previously developed to control the peach fruit moth, Carposina sasakii. First, T. viennensis was sampled from Japanese apricot, Prunus mume, and identified by its morphological characters. In addition, both cytochrome oxidase I (COI) and internal transcribed spacer (ITS) sequences supported the morphological identification. Second, the heat-tolerant developmental stage was determined in T. viennensis. When a $46^{\circ}C$ heat treatment was applied to egg, nymph, and adult stages of T. viennensis, adults were the most tolerant stage. Third, when heat temperature was used along with 1% $O_2$ and 15% $CO_2$, the mites showed a significant increase in susceptibility to the heat treatment. Finally, CATTS at $46^{\circ}C$ with 15% $CO_2$ and 1% $O_2$ for 30 min resulted in 100% mortality of all T. viennensis development stages. These results indicated that CATTS isapplicable to disinfest T. viennensis in post-harvest apples.

Increased Abiotic Stress Tolerance by Over-expressing OsABF2 in Transgenic Arabidopsis thaliana (OsABF2를 과발현시킨 애기장대에서 비생물학적 스트레스에 대한 내성 증가)

  • Park, Phun Bum
    • Journal of Life Science
    • /
    • v.22 no.11
    • /
    • pp.1515-1522
    • /
    • 2012
  • The phytohormone abscisic acid (ABA) plays an important role in the adaptive response of plants to abiotic stresses. ABA also regulates many important processes, including seed dormancy, germination, inhibition of cell division, and stomatal closure. OsABF2 (Oryza sativa ABRE binding factor2) is one of the bZIP type transcription factors, which are involved in abiotic stress response and ABA signaling in rice. Expression of OsABF2 is induced by ABA and various stress treatments. Findings show that survival rates of OsABF2 over-expressing Arabidopsis lines were increased under drought, salt, and heat stress conditions. The germination ratio of OsABF2 over-expressing Arabidopsis lines was decreased in the presence of ABA. Results indicate that OsABF2 over-expressing Arabidopsis lines have enhanced abiotic stress tolerance and have increased ABA sensitivity.

Effect of Silicate Fertilizer on Growth, Physiology and Abiotic Stress Tolerance of Chinese Cabbage Seedlings (규산비료 시용이 배추 묘의 생장과 환경내성에 미치는 영향)

  • Vu, Ngoc-Thang;Kim, Si-Hong;Kim, Seung-Yeon;Choi, Ki-Young;Kim, Il-Seop
    • Journal of Bio-Environment Control
    • /
    • v.24 no.2
    • /
    • pp.51-56
    • /
    • 2015
  • The objective of this study was to evaluate the effect of silicate fertilizer on growth, physiology and abiotic stress tolerance of Chinese cabbage seedlings. Five silicate concentrations (8, 16, 32, 64, and 128mM) and control (non-treatment) were applied to Chinese cabbage seedlings twice a week. Three weeks after application of silicate treatment, seedlings were used for treating abiotic stresses and were assessed for growth and physiological characteristics. Growth parameters significantly increased in 8, 16, and 32mM treatments except 64 and 128mM. Total root surface area, total root length, and number of root tips increased in 8, 16 and 32mM treatments, but they decreased in treated seedlings with 64 and 128mM of silicate. The highest growth parameters and root morphology were observed in 8mM treatment. As for the effect on the seedling physiology, transpiration rates decreased while stomatal diffusive resistance increased to increasing silicate concentration. The application of silicate reduced the electrical conductivity, heating and chilling injury index at high and low temperatures. Silicate enhanced drought tolerance of Chinese seedlings by delaying the starting time of wilting point. The starting time of wilting point in the control was 3 days after discontinuation of irrigation, while in the 8, 64 and 128mM of silicate treatments were 4 days, and the 16 and 32mM treatments were 5 days. All plants were wilted after 5 days in control without irrigation whereas it showed in 8mM treatment after 6 days, in 16, 32, 64, 128mM treatments after 7 days.

Increased Antioxidative Activities against Oxidative Stress in Saccharomyces cerevisiae KNU5377 (산화 스트레스 대한 Saccharomyces cerevisiae KNU5377의 항산화 활성의 증가)

  • Kim, Il-Sup;Yun, Hae-Sun;Yang, Ji-Young;Lee, Oh-Seok;Park, Heui-Dong;Jin, Ing-Nyol;Yoon, Ho-Sung
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.429-435
    • /
    • 2009
  • Oxidative stress is a consequence of an imbalance of the defense system against cellular damage generated by reactive oxygen species (ROSs) such as superoxide anions (menadione; MD). Most organisms have evolved a variety of defense systems to protect cells from adverse conditions. In order to evaluate stress tolerance against oxidative stress generating MD, comparative analyses of antioxidant capacity, or free radical scavenger ability, were performed between S. cerevisiae KNU5377 (KNU5377) and three wild-type S. cerevisiae strains. In a medium containing 0.4 mM MD, the KNU5377 strain showed higher cell viability and antioxidant ability, and contained higher levels of trehalose, superoxide dismutase, thioredoxin system, glucose-6-phosphate dehydrogenase, and some heat shock proteins. The KNU5377 strain also produced a lower level of oxidative stress biomarker than the other three yeast strains. These results indicate that S. cerevisiae KNU5377 has a higher level of tolerance to oxidative stress due to the increased expression of cell rescue proteins and molecules, thus alleviating cellular damage more efficiently than other S. cerevisiae strains.

High-Temperature Mechanical Behaviors of Type 316L Stainless Steel (Type 316L 스테인리스강의 고온 기계적 거동)

  • Kim, Woo-Gon;Lee, Hyeong-Yeon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.92-99
    • /
    • 2020
  • High-temperature mechanical behaviors of Type 316L stainless steel (SS), which is considered as one of the major structural materials of Generation-IV nuclear reactors, were investigated through the tension and creep tests at elevated temperatures. The tension tests were performed under the strain rate of 6.67×10-4 (1/s) from room temperature to 650℃, and the creep tests were conducted under different applied stresses at 550℃, 600℃, 650℃, and 700℃. The tensile behavior was investigated, and the modeling equations for tensile strengths and elongation were proposed as a function of temperature. The creep behavior was analyzed in terms of various creep equations: Norton's power law, modified Monkman-Grant relation, damage tolerance factor(λ), and Z-parameter, and the creep constants were proposed. In addition, the tested tensile and creep strengths were compared with those of RCC-MRx. Results showed that creep exponent value decreased from n=13.55 to n=7.58 with increasing temperature, λ = 6.3, and Z-parameter obeyed well a power-law form of Z=5.79E52(σ/E)9.12. RCC-MRx showed lower creep strength and marginally different in creep strain rate, compared to the tested results. Same creep deformation was operative for dislocation movement regardless of the temperatures.