Browse > Article
http://dx.doi.org/10.5656/KSAE.2012.04.0.08

Control Efficacy of Controlled Atmosphere and Temperature Treatment System Against the Hawthorn Spider Mite, Tetranychus viennensis  

Son, Ye-Rim (Department of Bioresource Sciences, Andong National University)
Lee, Jong-Ho (Animal, Plant and Fisheries Quarantine and Inspection Agency, National Plant Quarantine Service)
Kim, Yong-Gyun (Department of Bioresource Sciences, Andong National University)
Publication Information
Korean journal of applied entomology / v.51, no.2, 2012 , pp. 131-140 More about this Journal
Abstract
The hawthorn spider mite, Tetranychus viennensis, is a pest of apples and a quarantine pest from some countries that import apples from Korea. A controlled atmosphere and temperature treatment system (CATTS) was developed as an alternative disinfestation method to methyl bromide fumigation treatment, and has been applied to control various insects and other arthropod pests on fruits. We applied CATTS to disinfect T. viennensis under conditions that were previously developed to control the peach fruit moth, Carposina sasakii. First, T. viennensis was sampled from Japanese apricot, Prunus mume, and identified by its morphological characters. In addition, both cytochrome oxidase I (COI) and internal transcribed spacer (ITS) sequences supported the morphological identification. Second, the heat-tolerant developmental stage was determined in T. viennensis. When a $46^{\circ}C$ heat treatment was applied to egg, nymph, and adult stages of T. viennensis, adults were the most tolerant stage. Third, when heat temperature was used along with 1% $O_2$ and 15% $CO_2$, the mites showed a significant increase in susceptibility to the heat treatment. Finally, CATTS at $46^{\circ}C$ with 15% $CO_2$ and 1% $O_2$ for 30 min resulted in 100% mortality of all T. viennensis development stages. These results indicated that CATTS isapplicable to disinfest T. viennensis in post-harvest apples.
Keywords
Tetranychus viennensis; CATTS; quarantine; COI; ITS;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Yahia, E.M. 2000. The mortality of artificially infested third instar larvae of Anastrepha ludens and A. obliqua in mango fruit with insecticidal controlled atmospheres at high temperatures. Acta Hort. 509: 833-839.
2 Yocum, G.D. and D.L. Denlinger. 1992. Prolonged thermotolerance in the flesh fly, Sarcophaga crassipalpis, does not require continuous expression or persistence of the 72 kDa heat-shock protein. J. Insect Physiol. 38: 603-609.   DOI
3 Sharp, J.L. and G.J. Hallman. 1994. Quarantine treatments for pests and food plants. Westview, Boulder, CO, USA.
4 Shim, J.K., D.O. Jung, J.W. Park, D.W. Kim, D.M. Ha and K.Y. Lee. 2006. Molecular cloning of the heat-shock cognate 70 (Hsp70) gene from the two-spotted spider mite, Tetranychus urticae, and its expression in response to heat shock and starvation. Comp. Biochem. Physiol. B 145: 288-295.   DOI
5 Son, Y., K. Choi, Y. Kim and Y. Kim. 2010a. Applicability of CATTS as a postharvest phytosanitation technology against the peach fruit moth, Carposina sasakii Matsumura. Kor. J. Appl. Entomol. 49: 37-42.   DOI
6 Son, Y., Y. Kim and Y. Kim. 2010b. Control effect of a stored grain insect pest, Tribolium castaneum, by 'CATTS' postharvest treatment. Kor. J. Appl. Entomol. 49: 363-369.   DOI
7 Tang, J., J.N. Ikediala, S. Wang, J.D. Hansen and R.P. Cavalieri. 2000. High-temperature short-time thermal quarantine methods. Postharvest Biol. Technol. 21: 129-145.   DOI   ScienceOn
8 UNEP (United Nations Environmental Programme). 1992. Methyl bromide: atmospheric science, technology and economics. UNEP, U.N. Headquarters, Nairobi, Kenya.
9 USDA. 1982. Insects not known to occur in the United States. A fruit-tree spider mite (Tetranychus viennensis Zacher), pp. 40-41. In Pest identification notebook, Vol. 1. USDA/ARS, Frederick, MD.
10 Vrain, T.C., D.A. Wakarchuk, A.C. Levesque and R.I. Hamilton. 1992. Intraspecific rDNA restriction fragment length polymorphism in the Xiphinema americanum group. Fund. Appl. Nematol. 15: 563-574.
11 Wang, S., J. Tang, J.A. Johnson, E. Micham and J.D. Hansen. 2002. Process protocols based on radio frequency energy to control field and storage pests in inshell walnuts. Postharvest Biol. Technol. 26: 265-273.   DOI
12 Neven, L.G., L. Rehfield-Ray and D. Obenland. 2006. Confirmation and efficacy tests against codling moth and oriental fruit moth in peaches and nectarines using combination heat and controlled atmosphere treatments. J. Econ. Entomol. 99: 1610-1619.   DOI
13 Neven, L.G. and E.J. Mitcham. 1996. CATTS: controlled atmosphere temperature treatment system, a novel approach to the development of quarantine treatments. Am. Entomol. 42: 56-59.   DOI
14 Neven, L.G. and L. Rehfield-Ray. 2006a. Combined heat and controlled atmosphere quarantine treatments for control of western cherry fruit fly in sweet cherries. J. Econ. Entomol. 99: 658-663.   DOI
15 Neven, L.G. and L. Rehfield-Ray. 2006b. Confirmation and efficacy test against codling moth and oriental fruit moth in apples using combination heat and controlled atmosphere treatments. J. Econ. Entomol. 99: 1620-1627.   DOI
16 Obenland, D., P. Neipp, B. Mackey and L.G. Neven. 2005. Peach and nectarine quality following treatment with high temperature forced air combined with controlled atmospheres. HortScience 40: 1425-1430.
17 Pardue, M.L. 1988. The heat shock response in biology and human disease: a meeting review. Genes Dev. 2: 783-785.   DOI
18 Park, M., B. Sung and J. Cho. 2011. Residual characteristics of methyl bromide and hydrogen cyanide in banana, orange, and pineapple. J. Appl. Biol. Chem. 54: 214-217.   DOI   ScienceOn
19 Paull, R.E. and J.W. Armstrong. 1994. Insect pests and fresh horticultural products: treatments and responses. CAB International, Wallingford, UK.
20 Raymond, M. 1985. Presentation d'un programme d'analyse log-probit pour micro-ordinateur. Cah. ORS-TOM. Ser. Ent. Med. et Parasitol. 22: 117-121.
21 Navajas, M. and B. Fenton. 2000. The application of molecular markers in the study of diversity in acarology: a review. Exp. Appl. Acarol. 24: 751-774.   DOI
22 SAS Institute, Inc. 1989. SAS/STAT user's guide, Release 6.03, Ed. Cary, N.C.
23 Liu, Y.B. 2003. Effects of vacuum and controlled atmosphere treatments on insect mortality and lettuce quality. J. Econ. Entomol. 96: 1100-1107.   DOI
24 Mainali, B.P., S. Shrestha, U.T. Lim and Y. Kim. 2008. Molecular markers of two sympatric species of the genus Frankliniella (Thysanoptera: Thripidae). J. Asia Pac. Entomol. 11: 45-48.   DOI   ScienceOn
25 Navajas, M., D. Fournier, J. Lagnel, J. Gutlerrez, and P. Boursot. 1996. Mitochondrial COI sequences in mites: evidence for variations in base composition. Insect Mol. Biol. 5: 281-285.   DOI
26 Navajas, M., J. Gutierrez, O. Bonato, H.R. Bolland and S. Mapangou-Divassa. 1994. Intraspecific diversity of the cassava green mite Mononychellus progresivus (Acari: Tetranychidae) using comparisons of mitochondrial and nuclear ribosomal DNA sequences and cross-breeding. Exp. Appl. Acarol. 18: 351-360.   DOI
27 Nelson, S.O. 1996. Review and assessment of radio-frequency and microwave energy for stored-grain insect control. Trans. ASAE 39: 1475-1484.   DOI
28 Neven, L.G. 1998. Effects of heating rate on the mortality of fifth-instar codling moth (Lepidoptera: Tortricidae). J. Econ. Entomol. 91, 297-301.   DOI
29 Neven, L.G. 2000. Physiological responses of insects to heat. Postharvest Biol. Technol. 21: 103-111.   DOI   ScienceOn
30 Neven, L.G. 2005. Combined heat and controlled atmosphere quarantine treatments for control of codling moth, Cydia pomonella, in sweet cherries. J. Econ. Entomol. 98: 709-715.   DOI
31 Neven, L.G. and S.R. Drake. 2000. Comparison of alternative quarantine treatments for sweet cherries. Postharvest Biol. Technol. 20: 107-114.   DOI
32 Hillis, D.M. and M.T. Dixon. 1991. Ribosomal DNA: molecular evolution and phylogenetic inference. Quart. Rev. Biol. 66: 411-429.   DOI   ScienceOn
33 Hollingsworth, R.G. and J.W. Armstrong. 2005. Potential of temperature, controlled atmospheres, and ozone fumigation to control thrips and mealybugs on ornamental plants for export. J. Econ. Entomol. 98: 289-298.   DOI
34 Ikediala, J.N., J. Tang, L.G. Neven and S.R. Drake. 1999. Quarantine treatment of cherries using 915 MHz microwaves: temperature mapping, codling moth mortality and fruit quality. Postharvest Biol. Technol. 16: 127-137.   DOI
35 Jo, K.D., S.B. Yim, S.K. Lee, S.H. Choi, T.H. Kim, K.H. Han and K.I. Song. 2003. Two cases of methyl bromide intoxication with seizures and altered mental state. J. Kor. Epilepsy Soc. 7: 125-129.
36 Kasap, I. 2003. Life history of hawthorn spider mite Amphitetranychus viennensis (Acarina: Tetranychidae) on various apple cultivars and at different temperatures. Exp. Appl. Acarol. 31: 79-91.   DOI
37 Kells, S.A., L.J. Mason, D.E. Maier and C.P. Woloshuck. 2001. Efficacy and fumigation characteristics of ozone in stored maize. J. Stored Prod. Res. 37: 371-383.   DOI
38 Lee, H.S. and B.K. Chung. 2011. Occurrences of major pests in Japanese apricot, Prunus mume Siebold & Zucc. in Gyeongnam province. Kor. J. Appl. Entomol. 50: 21-27.   DOI   ScienceOn
39 Lee, M.L., S.J. Suh and Y.J. Kwon. 1999. Phylogeny and diagnostic markers of six Tetranychus species (Acarina: Tetranychidae) in Korea based on the mitochondrial cytochrome oxidase subunit I. J. Asia Pac. Entomol. 2: 85-92.   DOI
40 Lee, M.L. and M.H. Lee. 1997. Amplified mitochondrial DNA identify four species on Tetranychus mites (Acarina: Tetranychidae) in Korea. Kor. J. Appl. Entomol. 36: 30-36.
41 Bolland, H.R., J. Gutierrez and C.H.W. Flechtmann. 1998. World catalogue of the spider mite family (Acari: Tetranychidae). Koninklijke Brill NV, Leiden, The Netherlands.
42 Butz, P. and B. Tauscher. 1995. Inactivation of fruit fly eggs by high pressure treatment. J. Food Process. Preserv. 19: 161-164.   DOI   ScienceOn
43 Carpenter, A. and M. Potter. 1994. Controlled atmospheres. pp. 171-198, In Quarantine treatments for pests and food plants, eds. by J.L. Sharp and G.J. Hallman. 290pp. Westview, Boulder, CO, USA.
44 Choi, K.H., Y.J. Kwon, S.W. Lee and O.H. Ryu. 1997. The ecology Tetranychus viennensis Zacher and its chemical control effects. Kor. J. Appl. Entomol. 36: 111-117.
45 Ehara, S. 1999. Revision of the spider mite family Tetranychidae of Japan (Acari, Prostigmata). Species Diversity 4: 63-141.
46 Ehara, S. and T. Gotoh. 1990. A new Tetranychus closely related to T. viennensis Zacher (Acari: Tetranychidae). Intl. J. Acarol. 16: 55-58.   DOI
47 FAO (Food and Agriculture Organization of the United Nations). 1983. International plant quarantine treatment manual. Plant production and protection paper 50. FAO, Rome.
48 Heinrich, B. 1981. Ecological and evolutionary perspectives. pp. 236-302. In Insect thermoregulation, ed. by B. Heinrich. Wiley, New York.
49 Gotoh, T. 1984. Annual life cycle of the hawthorn spider mite, Tetranychus viennensis Zacher. Jpn. J. Appl. Entomol. Zool. 28: 254-259.   DOI
50 Gotoh, T. 1986. Life-history parameters of the hawthorn spider mite, Tetranychus viennensis Zacher (Acarina: Tetranychidae), on deciduous oak. Appl. Entomol. Zool. 21: 389-393.   DOI