• Title/Summary/Keyword: 고속굽힘

Search Result 37, Processing Time 0.02 seconds

Acoustic Levitation and Rotation Produced by Ultrasonic Flexural Vibration (초음파 굽힘 진동에 의한 음향 부상 및 회전)

  • Loh, Byoung-Gook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.432-438
    • /
    • 2004
  • Acoustic levitation induced by ultrasonic flexural vibration at 28.4 KHz with a vibration amplitude of 10 micrometers is presented. Levitation of multiple objects along the length of the beam in a gap of 8.3 mm which is the half of acoustic wavelength is experimentally demonstrated. Analytical analysis predicts that levitated objects for the gap of half-the wavelength converges to the center of the gap, which is experimentally verified. It is observed that levitated objects with well-balanced mass distribution are set into rotation due to acoustic streaming. For cylinder-shaped Styrofoam with a diameter of 1.8 mm and a length of 3 mm, measured rotational velocity is 2400 revolution per minute. Applications of standing wave field levitation (SWFL) include manipulation of biological cells and blood constituents in biotechnology, and fine powder in material engineering.

Simplified Collision Analysis Method for Submerged Floating Railway Using the Theory of a Beam with an Elastic Foundation (탄성지지 보이론을 이용한 해중철도 간이 충돌해석법)

  • Seo, Sung-Il;Kim, Jin Sung
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.3
    • /
    • pp.202-206
    • /
    • 2013
  • A submerged floating railway is an innovative tunnel infrastructure passing through the deep sea independent of wave and wind so that high speed trains can run on it. It doesn't depend on water depth and is cost effective due to modular construction on land. The construction period can be reduced drastically. This paper introduces the concept design of a submerged floating railway, and for securing safety, proposes a method to analyze the structural behavior of the body in case of collision with a submarine. The theory of a beam with an elastic foundation was used to calculate the equivalent mass of the body so that the perfect elastic collision could be applied to calculate the collision velocity. The maximum deformation and bending moment was analyzed based on energy conservation. To verify the results, a collision analysis using a finite element analysis code was made. Comparing the results confirmed that this simplified collision analysis method gives enough accurate deformation and bending moment to be used for actual estimation in the initial design stage.

Mechanical Characteristic Evaluation of Sn-Ag-Cu Lead Free Solder Ball Joint on The Pad Geometry (패드 구조에 따른 Sn-Ag-Cu계 무연 솔더볼 접합부의 기계적 특성평가)

  • Jang, Im-Nam;Park, Jai-Hyun;Ahn, Yong-Sik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.41-47
    • /
    • 2010
  • The effect of PCB and BGA pad designs was investigated on the mechanical property of Pb-free solder joints. The mechanical property of solder joint was tested by three different test methods of drop impact tests, bending impact test, and high speed shear test. Two kinds of pad design such as NSMD (Non-Solder Mask Defined) and SMD (Solder Mask Defined) were applied with the OSP finished Pb-free solder (Sn-3.0Ag-0.5Cu, Sn-1.2Ag-0.5Cu). in the drop impact test and bending impact test, the characterized lifetime showed the same tendency, and SMD design showed better mechanical property of solder joint than NSMD regardless of test method, which was due to the different crack path. The fracture crack on SMD pad was propagated along the intermetallic compound (IMC) layer of solder joint, while the fracture crack on NSMD pad propagated through upper edge of land which shields pattern. In the high speed shear test, pad lift occurred on the solder joint of NSMD. SMD/SMD combination of pad design consequently illustrated the best mechanical property of BGA/PCB solder joint, followed by SMD/NSMD, NSMD/SMD, and NSMD/NSMD.

Structural Engineering of 60m Twin-hull typed Car-ferry (60m급 쌍동형 카페리 구조 엔지니어링 고찰)

  • Lee, Jung-Ho;Seo, Kwang-Chul;Kang, Byung-Mo;Kim, In-Chul;Park, Joo-Shin
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2017.04a
    • /
    • pp.129-130
    • /
    • 2017
  • This paper suggests study of basic structure design and structural analysis for the twin car-ferries. The rules and methodology for the analysis of strength of medium and small high speed vessels with a length of more than 50m and a width / ratio of more than 12, such as car-ferries, have not been clarified yet. Therefore, in this paper, the scantling of the members is based on the Korea Classification standards, and the car-ferries standards were additionally applied to verify the structural strength of the design. The results of this study are expected to be useful as basic data related to structural design and structural analysis of high speed twin car-ferries.

  • PDF

Design of Electric Automatic Manual Wheelchair Driving System (수·전동 휠체어 구동부 시스템 설계)

  • Kim, Jin-Nam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5392-5395
    • /
    • 2013
  • Application of electric wheelchair, sort of wheelchair which is playing important role in transporting patients and old people, has been increasing. In this study, we designed the electric wheelchairs' driving system. Using the multi-step gear, the driving system can get great power, even though the small capacity of motors. First, we designed the multi-step gear, test its bending strength and contact strength, as well as verified its performance. We installed 'B-type electric brake(Multiple plate clutch, Anti-magnetization) in same axle of the driving system, so it is possible to stop under huge torque and small size. Using this driving system of the multi-step gear which we designed, it's possible to improve driving gear efficiency 30% up and create the high-competitive electric wheelchair. And, it is easy to repair and control.

Dynamic Crack Propagation Analysis for Mild Steel Specimen (연강 시험편에 대한 동적 균열 전파 해석)

  • Choi, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.97-100
    • /
    • 2006
  • Dynamic crack propagation in ductile steel is investigated by means of impact loaded 3 point bending specimens. The specimen has the size of $320{\times}75\;mm$ with a thickness of 10 mm. One static and two dynamic experiments with impact velocities of 30.2 m/s and 45.2 m/s are carried out. High speed photography is used to obtain crack growth and crack tip opening displacement data. Direct measurement of the relative rotation of the two specimen halves is made by using Moire interference pattern. The experiments indicate no or only a slight influence of the loading rate on the crack propagation.

  • PDF

A Study on Design Improvement and Strength Evaluation of Shafting System for Washing Machine (드럼세탁기 축계의 설계개선 및 강도평가에 관한 연구)

  • Kim Eui-Soo;Kim Sang-Uk;Kim Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.154-162
    • /
    • 2006
  • By laying its drum horizontally, front-loaded washing machine mostly used in Europe that uses the head of the water to launder was appropriate for washing only small amount of laundry. However, the demands of customers are requiring front-loaded washing machine to handle big capacity laundry as well, and have faster rotation speed to increase drying ability. To meet such demands, more stress from bending and twisting are complexly loaded onto the shaft supporting the horizontal drum, causing problems in fracture strength and fatigue life. Shafting system is mainly divided into flange and shaft. Flange is located between the drum and shaft, transferring power from the shaft to drum, and acting as a supporter of the back of the drum. Shaft is connected from the flange to insert production, transferring power from the motor to drum, and mainly acting as stiffness against the horizontal weight of the shafting system. In this paper, strength analysis and experiment were executed on both the shaft and flange of front-loaded washing machine to suggest the design improvement of shafting system for big capacity, high-rotation drying. Also, verification of this evaluation was executed on fracture strength and fatigue life for studied shaft system.

Structural analysis of an 38 feet diffusion style for high-speed catamaran yacht (38피트급 보급형 고속 카타마란 요트의 구조해석)

  • Park, Joo-Shin;Ko, Jae-Yong;Lee, Kyoung-Woo;Oh, Woo-Jun
    • Journal of Navigation and Port Research
    • /
    • v.33 no.3
    • /
    • pp.167-174
    • /
    • 2009
  • Recently, design technology of has been required such as catamaran yacht with high-speed according to expand a marine leisure industry. The domestic technical development for design and production of yacht is not actively than Canada, USA, Japan etc. However, with further development of yacht design & technology, it is need to develop a key technology related to increase the value of catamaran yacht. In the present paper, new guideline is suggest for catamaran yacht as like kinds of marine leisure ship in order for fundamental structure design and structural analysis for twin-hulled ship yacht and techniques for structural analysis as sea leisure ship in this research. The class of society has not been proposed formally about regulation and methodology for estimation of strength of small hight-speed craft with satisfying two conditions as noted; length less than 50meters, ratio of length to breadth less than 12. In the present study, we were adopted DNV (Yachts, Design Principles, Design Loads, Hull Structural Design) Rule and KR (FRP rule application guide) for scantling of structural members. Furthermore, ABS rule is used for structural calculation about application of loading conditions for catamaran yacht. This study can be available feedback role to manufacture of 38ft diffusion style for catamaran yacht. It is expected that this study will be a good reference in order to design of catamaran yacht with high-speed.

Study on Measuring Mechanical Properties of Sport Shoes Using an Industrial Robot (산업용 로봇을 이용한 스포츠화의 운동역학특성 측정에 관한 연구)

  • Lee, Jong-Nyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3833-3838
    • /
    • 2009
  • This paper introduces a measurement system for mechanical properties of sport shoes using an industrial robot. The robot system used in this paper is a commercial Puma type robot system(FARA AT2 made by SAMSUNG Electronics) with 6 joints and the end-effector is modified to produce a human walking motion. After analyzing human walking with a high speed video camera, each joint angle of the robot system is extracted to be used in the robot system. By using this system, ground impact forces were measured during stepping motion with 3 different shoe specimens made of 3 different hardness outsoles, respectively. As other mechanical properties, both bending moments to bend the toe part of the same specimen shoes and pronation quantities during walking motion were measured as well. In the impact test with the same depth of deformation under the ground level, the effect of the outsole hardness was clearly appeared such that the harder outsole produces the higher ground reaction force. The bending test and the pronation test also show proportional increments in the bending stiffness and the moment Mx according to the outsole hardness. Throughout such experiments, the robot system has produced consistent results so that the system could be used in obtaining valuable informations for a shoe designing process.

Analytical study to the Brake Lever in Basic Brake System for Railway Vehicle (철도차량용 기초제동장치의 제동레버 강도에 대한 해석적 연구)

  • Park, Su-Myung;Park, Jae-young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.624-629
    • /
    • 2016
  • A brake lever in a basic railway brake system is an important safety device that delivers braking force from the brake cylinder to the brake pad. The safety guidelines for designing rolling stock only qualitatively describe that the brake lever should have sufficient strength. Each train has a different type of brake lever. One brake lever that was designed with a factor of safety of 1.27 has failed, so the material was changed to increase the strength. Therefore, the stress distribution and weak points of the lever were identified by theoretical analysis. and structural analysis. Different brake lever designs were examined for KTX high-speed trains, which have a split-type structure, as well as for electric locomotives, which use an electric multiple unit (EMU) with a unity-type structure. A fracture test was also done to look at the relationship between the vertical stress and the bending stress during braking. The results were used to find a safety factor to apply to each train and suggest quantitative minimum guidelines. We also looked at changing the unity-type EMU brake lever to the split type under the same conditions and analyzed how much the design change affected the factor of safety.