• Title/Summary/Keyword: 고분자 복합소재

Search Result 201, Processing Time 0.026 seconds

Effects of Silane Structure on Composite Interaction Parameter (αC)) of Silica Filled Rubber Compounds (실란 구조가 실리카 복합소재 내 구조발달 상호계수(αC)에 미치는 영향)

  • Kim, Sung Min;Kim, Kwang Jea
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.411-416
    • /
    • 2014
  • Due to the polar characteristics of silica compared to carbon black, the degree of silica dispersion, which affects the mechanical properties of rubber compounds, is an important issue. Wolff first introduced the in-rubber structure of particles (${\alpha}_F$) to express the structure development in the compounds; however, with the introduction of bifunctional silanes, his theory could not explain the 3-dimensional network structure of the compounds. Later his theory was expanded to express the composite interaction parameter (in-rubber structure of the compound) (${\alpha}_C$), which included Wolff's filler-filler interaction parameter (${\alpha}_F$), however, there was no reported experimental result proving the theory. This research first experimentally expressed the in-rubber structure of the compound ${\alpha}_C$ (= ${\alpha}_F+{\alpha}_{FP}$(filler-silane-rubber interaction parameter) + ${\alpha}_P$ (rubber-rubber interaction parameter)) upon mono- and bifunctional silane treated silica filled natural rubber (NR) compounds. Using different structure silanes, i.e. PTES, OTES, TESPD, and TESPT, the ${\alpha}_C$ value of each compound was measured and calculated. The ${\alpha}_C$ value of TESPT treated silica filled compound was 1.64, which composed of ${\alpha}_F$ (0.99), ${\alpha}_{FP}$ (0.31), and ${\alpha}_P$ (0.34).

Study on Tensile Properties of Polyamide 12 produced by Laser-based Additive Manufacturing Process (레이저 적층제조기술로 제작한 폴리아미드 12 시편의 인장특성 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.217-223
    • /
    • 2019
  • The application of 3D printing technology is expanding due to the production of the complex-shape parts and the one-step manufacturing process. Moreover, various technical solutions in 3D printing are emerging through continuous research and development. Representative technologies include SLS technology, in which a desired area is sintered and laminated by irradiating a powder-type material with a laser. In addition, high-performance engineering plastic parts are being manufactured in increasing numbers. In this study, tensile specimens were fabricated from polyamide 12, a widely available polymer, and the glass bead-reinforced polyamide 12. The specimen-build orientation was divided into 0°, 45°, and 90° on the fabrication platform, and the tensile test temperature was -25℃, 25℃, and 60℃. The test results showed that the tensile modulus of both materials decreases as the build orientation becomes closer to 90°. In addition, the tensile strength of glass bead-reinforced PA12 showed more dependence on the build orientation than PA12. In addition, the tensile modulus and tensile strength decreased with increasing test temperature.

The Characteristic of Dyeing and Mechanical Properties of Draw Textured Yarn with High Oriented Yarn (고속방사소재 가연사의 물성 및 염색 특성)

  • Kim, Su-A;Lee, Min-Su;Kang, Ji-Man;Lee, Jun-Hee
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.86-86
    • /
    • 2012
  • 고속방사소재는 연신공정이 없이 6,000m/min이상의 고속방사공정만이 있으므로 원가절감이 되고, 빠른 냉각, 높은 변형속도 등으로 섬유의 결정화도, 분자와 결정의 배향 및 모폴로지(morphology) 변화 등의 기계적 및 섬유상의 특성이 종래의 원사와는 다르게 된다. 방사속도가 증가함에 따라 배향도가 증가하면서 결정영역 또한 증가한다. 또한 기존 연신사에 비해 큰 결정크기를 갖는데 방사속도에 에 따른 방사응력의 증가가 응력유도 결정화도를 유발하여 결정크기 및 결정화도를 증가시키고,따라서 고분자의 용융점도를 고온측으로 이동시키는 현상을 나타내게 한다. 즉, 고속방사에 있어서는 연신에 필요한 임계응력 이상의 과도한 응력이 가해짐으로 인해 결정구조가 일반 연신사에 비해 현저히 발달한다는 것을 알 수 있다. 고속방사 원사를 통일한 조건으로 염색하는 경우 기존의 연신사보다 염착량이 많아 농색으로 염색이 가능하고 염착속도도 빠른 특징을 갖는 데이는 고속방사 원사의 비결정 배향이 낮고 느슨한 구조를 갖기 때문에 염료의 침투가 용이한 것으로 해석되고 있다. PET 섬유는 방사 후 형태안정성을 부여하기 위해서 염색 전처리 공정에서 열을 가하게 된다. 이런 과정에서 섬유의 미세구조가 변하게 되는데,특히 고속방사의 경우 섬유 형성과정이 연신사와는 다르므로 열에 의한 구조 변화와 이에 따른 염색성 변화에 대해 검토해 보는 것은 고속방사의 응용면에서 꼭 필요하다. 본 연구에서는 고속방사소재의 가장 단점인 잔류신도, 저수축현상, stiff감을 보완하면서 고속방사소재의 장점인 심색성을 부각시켜 차별화된 복합사 제조기술을 개발하기 위해 그 기술개발이 기초 연구로서 일반 일반 DTY사와 고속방사소재인 HOY사를 이용한 DTY사의 물성 및 염색 특성을 비교분석 하고자 한다.

  • PDF

Dielectric and piezoelectric properties of PZT-polymer 3-3 type composite for ultrasonic transducer applications (초음파 트랜스듀서용 PZT-고분자 3-3형 복합압전체의 유전 및 압전특성)

  • 박정학;이수호;최헌일;사공건;배진호
    • Electrical & Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.146-151
    • /
    • 1996
  • PZT powders were prepared by the molten salt synthesis method. The porous PZT ceramics were made from a mixture of PZT and polyvinylalcohol(PVA) by BURPS(Bumout Plastic Sphere) technique. The 3-3 type composites were fabricated by impregnating an sintered porous PZT ceramics with various polymer matrices. The relative permittivity of 3-3 type composite specimens was shown 860-1,100 smaller than that of solid PZT ceramics(2,100), and the dissipation factors of composite specimens were about 0.02 to 0.03. The piezoelectric coefficient d$_{33}$ of composite specimens(285-328*10$^{12}$ C/N) was comparable with that of single phase PZT specimens(364*10$^{-12}$ C/N). The thickness mode coupling factor k$_{t}$(O.5-0.6) of composite specimens was comparable with that of single phase PZT specimens(k$_{t}$-0.7), and the mechanical quality factor of composite specimens was smaller than 10, and thus these 3-3 type composite specimens would be believed as a good candidates for broad band transducer applications.ons.

  • PDF

Effects of Nano Silica and Siloxane on Properties of Epoxy Composites for Adhesion of Micro Electronic Device (나노 실리카 및 실록산이 초소형 전자소재 접착제용 에폭시 복합재의 물성에 미치는 효과)

  • Lee, Donghyun;Kim, Daeheum
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.332-336
    • /
    • 2009
  • When NCAs(non-conductive adhesives) are used for adhesion of micro-electronic devices, they often show problems such as delamination and cracking, due to the differences of CTE(coefficients of thermal expansion) between NCAs and substrates. Additions of inorganic particles or flexibilizers have been performed to solve those problems. The effects of silica addition on thermal/mechanical properties of amino modified siloxane(AMS)/silica/epoxy-nanocomposites were examined. The silica was treated by 3-glycidoxypropyltrimethoxysilane(GPTMS) for better compatibility between silica and epoxy matrix. AMS/silica/epoxy-nanocomposites filled with various amounts of AMS(1 and 3 phr) and various amounts of silica(3, 5 and 7 phr) were prepared. And Tg, moduli and CTE of nanocomposites were analyzed. Tg of AMS/Aerosil(non-modified silica)/epoxy-nanocomposites decreased from 125 to $118^{\circ}C$ with increasing Aerosil contents and moduli increased from 2,225 to 2,523 MPa with increasing Aerosil contents. Tg of AMS/M-silica (modified silica)/epoxy-nanocomposites decreased from 124 to $120^{\circ}C$ with increasing M-silica contents and moduli increased from 1,981 to 2,743 MPa with increasing M-silica contents. CTE of AMS/Aerosil/epoxy-nanocomposites and AMS/M-silica/epoxy-nanocomposites showed decreasing tendency regardless of the surface treatments.

Characterization of Thermal Degradation of Polymide 66 Composite: Relationship between Lifetime Prediction and Activation Energy (폴리아미드 66 복합소재의 열 열화 특성: 수명 예측과 활성화 에너지의 상관관계)

  • Jung, Won-Young;Weon, Jong-Il
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.712-720
    • /
    • 2012
  • Thermal degradation for glass fiber-reinforced polyamide 66 composite (PA 66) with respect of thermal exposure time has been investigated using optical microscopy, scanning electron microscopy and Fourier transform infrared spectroscopy. As the thermal exposure time was prolonged, a slight increase in tensile strength for only initial stage and afterward, a proportional decrease of tensile strength was observed. These results can be explained by the increase of crystallinity, followed by the increase of crosslinking density, chain scission and the decrease in chain mobility, due to thermal oxidation with the exposure time. Fourier transform infrared spectroscopy results showed the increase of ketone peak and silica peak on the surface of thermally exposed PA 66. In addition, the thermal decomposition kinetics of PA 66 was analyzed using thermogravimetric analysis at three different heating rates. The relationship between activation energy and lifetime-prediction of PA 66 was investigated by several methodologies, such as statistical tool, UL 746B, Ozawa and Kissinger. The activation energy determined by thermogravimetric analysis had a relatively large value compared with that from the accelerated test. This may result in over-estimating the lifetime of PA 66. In this study, a master curve of exponential fitting has been developed to extrapolate the activation energy at various service temperatures.

Dispersion Characteristics of Magnetic Particle/Graphene Hybrid Based on Dispersant and Electromagnetic Interference Shielding Characteristics of Composites (분산제에 따른 자성금속 무전해도금 기반 그래핀 분산 특성 및 복합재의 전자파 차폐 특성 연구)

  • Lee, Kyunbae;Lee, Junsik;Jung, Byung Mun;Lee, Sang Bok;Kim, Taehoon
    • Composites Research
    • /
    • v.31 no.3
    • /
    • pp.111-116
    • /
    • 2018
  • In this paper, magnetic FeCoNi particles have been grown through electroless plating on the surface of graphene, and then this hybrid material has been dispersed by various surfactants to prepare films. The pyridine surfactant shows the highest dispersability and low surface resistance value (351 Ohm/sq) and the electromagnetic shielding ability at the frequency of 10 GHz. Specially, the evaporation of the pyridine during the drying process could be able to form the internal conductive network and high dispersion of FeCoNi on the surface of graphene.

Effect of Zinc Ion Containing ZDBC on the Vulcanization and Mechanical Properties of Silica Filled Natural Rubber (아연이온이 포함된 ZDBC 촉진제가 실리카로 충전된 천연고무 복합소재의 가황 및 물성에 미치는 영향)

  • Kim, Sung Min;Kim, Kwang-Jea
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.406-410
    • /
    • 2014
  • Zinc ion containing thiuram type accelerator zinc dibutyldithiocarbamate (ZDBC) was compared to other thiuram type accelerators (tetramethylthiuram disulfide (TMTD) and dipentamethylenethiuram tetrasulfide (DPTT)) in silica filled natural rubber (NR) compound upon vulcanization and mechanical properties (modulus, tensile strength, and elongation %). ZDBC added compound showed the fastest cure time (t10) and the highest reinforcement index (R.I.) among them and showed a marching behavior. The mechanism was reviewed and a new mechanism was proposed.

Performance Evaluation of Bio-Composites Composed of Acetylated Kenaf Fibers and Poly(lactic acid) (PLA) (아세틸화 케나프 섬유와 폴리락트산으로 구성된 바이오복합재료의 물성 평가)

  • Chung, T.J.;Lee, B.H.;Lee, H.J.;Kwon, H.J.;Jang, W.B.;Kim, H.J.;Eom, Y.G.
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.195-203
    • /
    • 2011
  • Eco-friendly materials or bio-composites were made with poly(lactic acid) (PLA) as matrix polymer and kenaf fibers as filler. Also, acetylated kenaf fibers and compatibilizer were adopted in order to improve the interfacial adhesion between fiber and polymer. In this study, the effect of chemical modification and compatibilizer on the mechanical-viscoelastic and morphology properties of the bio-composites was discussed. The hydrophobic fibers by acetylation were known to show better interfacial bonding with the matrix polymer and resulted in improved performance and morphology. Viscoelastic property and glass transition temperature, however, were not nearly enhanced.

Synthesis, Morphology and Permeation Properties of poly(dimethyl siloxane)-poly(1-vinyl-2-pyrrolidinone) Comb Copolymer (폴리디메틸실록산-폴리비닐피롤리돈 빗살 공중합체 합성, 모폴로지 및 투과성질)

  • Patel, Rajkumar;Park, Jung Tae;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.27 no.6
    • /
    • pp.499-505
    • /
    • 2017
  • The increasing number of natural disasters resulting from anthropogenic greenhouse gas emissions has prompted the development of a gas separation membrane. Carbon dioxide ($CO_2$) is the main cause of global warming. Organic polymeric membranes with inherent flexibility are good candidates for use in gas separation membranes and poly(dimethyl siloxane)(PDMS) specifically is a promising material due to its inherently high $CO_2$ diffusivity. In addition, poly(vinyl pyrrolidine)(PVP) is a polymer with high $CO_2$ solubility that could be incorporated into a gas separation membrane. In this study, poly(dimethyl siloxane)-poly(vinyl pyrrolidine)(PDMS-PVP) comb copolymers with different compositions were synthesized under mild conditions via a simple one step free radical polymerization. The copolymerization of PDMS and PVP was characterized by FTIR. The morphology and thermal behavior of the produced polymers were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Composite membranes composed of PDMS-PVP on a microporous polysulfone substrate layer were prepared and their $CO_2$ separation properties were subsequently studied. The $CO_2$ permeance and $CO_2/N_2$ selectivity through the PDMS-PVP composite membrane reached 140.6 GPU and 12.0, respectively.