DOI QR코드

DOI QR Code

Performance Evaluation of Bio-Composites Composed of Acetylated Kenaf Fibers and Poly(lactic acid) (PLA)

아세틸화 케나프 섬유와 폴리락트산으로 구성된 바이오복합재료의 물성 평가

  • Chung, T.J. (Adhesion & Bio-Composites, Program in Environmental Materials Science, Research Team for Biomass-based Bio-Materials, Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Lee, B.H. (Adhesion & Bio-Composites, Program in Environmental Materials Science, Research Team for Biomass-based Bio-Materials, Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Lee, H.J. (Adhesion & Bio-Composites, Program in Environmental Materials Science, Research Team for Biomass-based Bio-Materials, Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Kwon, H.J. (Adhesion & Bio-Composites, Program in Environmental Materials Science, Research Team for Biomass-based Bio-Materials, Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Jang, W.B. (Adhesion & Bio-Composites, Program in Environmental Materials Science, Research Team for Biomass-based Bio-Materials, Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Kim, H.J. (Adhesion & Bio-Composites, Program in Environmental Materials Science, Research Team for Biomass-based Bio-Materials, Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Eom, Y.G. (Department of Forest Products & Biotechnology, College of Forest Science, Kookmin University)
  • 정택준 (서울대학교 농업생명과학대학 산림과학부 환경재료과학, 바이오복합재료 및 접착과학 연구실, 농업생명과학연구원, 바이오매스 기반 바이오소재 연구팀) ;
  • 이병호 (서울대학교 농업생명과학대학 산림과학부 환경재료과학, 바이오복합재료 및 접착과학 연구실, 농업생명과학연구원, 바이오매스 기반 바이오소재 연구팀) ;
  • 이현지 (서울대학교 농업생명과학대학 산림과학부 환경재료과학, 바이오복합재료 및 접착과학 연구실, 농업생명과학연구원, 바이오매스 기반 바이오소재 연구팀) ;
  • 권혁진 (서울대학교 농업생명과학대학 산림과학부 환경재료과학, 바이오복합재료 및 접착과학 연구실, 농업생명과학연구원, 바이오매스 기반 바이오소재 연구팀) ;
  • 장원범 (서울대학교 농업생명과학대학 산림과학부 환경재료과학, 바이오복합재료 및 접착과학 연구실, 농업생명과학연구원, 바이오매스 기반 바이오소재 연구팀) ;
  • 김현중 (서울대학교 농업생명과학대학 산림과학부 환경재료과학, 바이오복합재료 및 접착과학 연구실, 농업생명과학연구원, 바이오매스 기반 바이오소재 연구팀) ;
  • 엄영근 (국민대학교 삼림과학대학 임산생명공학과, 목재해부 및 공학목재 연구실)
  • Received : 2011.07.21
  • Accepted : 2011.08.03
  • Published : 2011.09.30

Abstract

Eco-friendly materials or bio-composites were made with poly(lactic acid) (PLA) as matrix polymer and kenaf fibers as filler. Also, acetylated kenaf fibers and compatibilizer were adopted in order to improve the interfacial adhesion between fiber and polymer. In this study, the effect of chemical modification and compatibilizer on the mechanical-viscoelastic and morphology properties of the bio-composites was discussed. The hydrophobic fibers by acetylation were known to show better interfacial bonding with the matrix polymer and resulted in improved performance and morphology. Viscoelastic property and glass transition temperature, however, were not nearly enhanced.

친환경 소재인 바이오복합재료(bio-composites)의 제조를 위하여 기질 고분자로는 poly(lactic acid) (PLA)를 그리고 충전제(filler)로는 케나프 섬유(kenaf fiber)를 사용하였다. 또한 섬유와 고분자 사이의 계면결합 향상을 위해 아세틸화 케나프 섬유(acetylated kenaf fiber)와 상용화제(compatibilizer)를 첨가해 주었다. 본 연구에서는 화학처리와 상용화제가 기계적-점탄성과 형태학적 특성에 미치는 영향을 평가하였고, 섬유가 소수성이 될수록 기질 고분자와 높은 계면결합을 가지며 물성과 형태학적 성질 또한 향상된다는 결과를 보여줬다. 그러나 점탄성과 유리전이온도에는 큰 영향을 미치지 않는다는 사실을 확인하였다.

Keywords

References

  1. 조동환, 김현중, "자연순환형 바이오복합재료", Elastomers and Composites, 44, 13 (2009).
  2. Z. Q. Li, X. D. Zhou, and C. H. Pei, "Preparation and characterization of bacterial cellulose/polylactide nanocomposites", Polymer-Plastics Technology and Engineering, 49, 141 (2010). https://doi.org/10.1080/03602550903284198
  3. 이세나, 이병호, 김현중, 김수민, 엄영근, "대나무 분말의 함량 및 입자크기에 따른 바이오복합재의 물성평가", 목재공학, 37, 310 (2009).
  4. L. Liu, J. Yu, L. Cheng, and X. Yang, "Biodegradability of poly (butylene succinate)(PBS) composite reinforced with jute fibre", Polymer Degradation and Stability, 94, 90 (2009). https://doi.org/10.1016/j.polymdegradstab.2008.10.013
  5. B. H. Lee, H. S. Kim, S. Lee, H. J. Kim, and J. R. Dorgan, "Bio-composites of kenaf fibers in polylactide: Role of improved interfacial adhesion in the carding process", Composites Science and Technology, 69, 2573 (2009). https://doi.org/10.1016/j.compscitech.2009.07.015
  6. 김삼성, 이병호, 김현중, 오세창, 안세희, "알칼리처리된 kenaf 섬유가 충전된 Polypropylene/kenaf 바이오복합재의 기계적 특성", 목재공학, 37, 222 (2009).
  7. M. Jonoobi, J. Harun, A. P. Mathew, M. Z. B. Hussein, and K. Oksman, "Preparation of cellulose nanofibers with hydrophobic surface characteristics", Cellulose, 17, 299 (2010). https://doi.org/10.1007/s10570-009-9387-9
  8. V. Tserki, P. Matzinos, S. Kokkou, and C. Panayiotou, "Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part I. Surface chemical modification and characterization of waste flour", Composites Part A: Applied Science and Manufacturing, 36, 965 (2005). https://doi.org/10.1016/j.compositesa.2004.11.010
  9. N. Zafeiropoulos, G. Dijon, and C. Baillie, "A study of the effect of surface treatments on the tensile strength of flax fibres: Part I. Application of Gaussian statistics", Composites Part A: Applied Science and Manufacturing, 38, 621 (2007). https://doi.org/10.1016/j.compositesa.2006.02.004
  10. X. F. Sun and R. C. Sun, "Comparative study of acetylation of rice straw fiber with or without catalysts", Wood and Fiber Science, 34, 306 (2002).
  11. 황현득, 문제익, 이용주, 김현중, 현진호, 노승만, 강충열, 이재우, 남준현, 박종명, "자동차용 pre-primed 적용을 위한 polyester 및 polyvinylidene fluoride 도료의 경화거동과 인장강도 특성", 접착 및 계면, 10, 155 (2009).
  12. A. Yussuf, I. Massoumi, and A. Hassan, "Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: the influence of the natural fibers on the mechanical, thermal and biodegradability properties", Journal of Polymers and the Environment, 18, 422 (2010). https://doi.org/10.1007/s10924-010-0185-0
  13. N. A. Ibrahim, W. M. Z. W. Yunus, M. Othman, K. Abdan, and K. A. Hadithon, "Poly (Lactic Acid)(PLA)-reinforced kenaf bast fiber composites: the effect of triacetin", Journal of Reinforced Plastics and Composites, 29, 1099 (2010). https://doi.org/10.1177/0731684409344651
  14. H. S. Yang, M. P. Wolcott, H. S. Kim, S. Kim, and H. J. Kim, "Effect of different compatibilizing agents on the mechanical properties of lignocellulosic material filled polyethylene bio-composites", Composite Structures, 79, 369 (2007). https://doi.org/10.1016/j.compstruct.2006.02.016
  15. M. Huda, L. Drzal, A. Mohanty, and M. Misra, "Effect of fiber surface-treatments on the properties of laminated biocomposites from poly (lactic acid)(PLA) and kenaf fibers", Composites Science and Technology, 68, 424 (2008).
  16. S. Ochi, "Mechanical properties of kenaf fibers and kenaf/PLA composites", Mechanics of Materials, 40, 446 (2008). https://doi.org/10.1016/j.mechmat.2007.10.006
  17. R. Agrawal, N. Saxena, K. Sharma, S. Thomas, and M. Sreekala, "Activation energy and crystallization kinetics of untreated and treated oil palm fibre reinforced phenol formaldehyde composites", Materials Science and Engineering A, 277, 77 (2000). https://doi.org/10.1016/S0921-5093(99)00556-0
  18. L. C. Tomé, R. J. B. Pinto, E. Trovatti, C. S. R. Freire, A. J. D. Silvestre, C. P. Neto, and A. Gandini, "Transparent bionanocomposites with improved properties prepared from acetylated bacterial cellulose and poly (lactic acid) through a simple approach", Green Chemistry, 13, 419 (2011). https://doi.org/10.1039/c0gc00545b
  19. Q. Zhou, D. Cho, B. K. Song, and H. J. Kim, "Novel jute/polycardanol biocomposites: effect of fiber surface treatment on their properties", Composite Interfaces 16, 7, 781 (2009). https://doi.org/10.1163/092764409X12477449494437