• Title/Summary/Keyword: 고내구성

Search Result 527, Processing Time 0.026 seconds

A Study on the Support Characteristics of the High Strength Lightweight Steel Pipe Rockbolt (경량 고강도 강관 록볼트의 지보특성에 관한 연구)

  • Kim, Jong Woo;Kim, Myeong Kyun;Kim, Dong Man;Kim, Kyung Hun;Baek, Jae Wook
    • Tunnel and Underground Space
    • /
    • v.24 no.5
    • /
    • pp.395-403
    • /
    • 2014
  • In this study, a steel pipe type rockbolt manufactured from special material was developed which has high strength and lightweight characteristics. Achievement of grout filling between rockbolt and hole wall was investigated through grout injection tests. Yield force of the developed rockbolt was also examined through tensile tests, which was compared with that of the deformed bar type rockbolt. In addition, the strength and elongation properties of the developed rockbolt were investigated through pull-out tests at three domestic sites showing different RMR classes. It is finally supposed that the developed rockbolt can be suitable for the permanent tunnel support because it has high strength and high durability rather than deformed bar type rockbolt.

An Experimental Study on the Improvement of Early Strength and Chloride Attack Resistance for Marine Concrete (해양용콘크리트의 초기강도 및 내염해 저항성 향상에 관한 실험적 연구)

  • Lee, Keon-Ho;Kim, Jong-Back;Bae, Jun-Young;Seo, Shin-Seok;Jo, Sung-Hyun;Roh, Hyeon-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.661-664
    • /
    • 2008
  • The structure which is located in special surroundings like ocean-environment is physically and chemically eroded by seawater or salt damage, and then concrete-structure becomes deteriorated by iron corrosion and swelling pressure which leads to remarkably decline durability due to cracks and exploitation. As a measure against salt damage, it is actively being examined to use the blended cement that controls salt damage and fix chloride in the process of hydration. In this study, therefore, to examine the property of marine concrete added admixture, marine concrete is manufactured by adding high-strength admixture(omega2000) by 0, 5, 10, and 15% to low heat-blended cement. Then it shows that the compressive strength of manufactured marine cement tends to increase and chloride penetration resistance improves.

  • PDF

The Evaluation of Mechanical Properties of Ultra High Performance Concrete with Using Steel Fiber of Wave Type (물결형 강섬유를 이용한 초고성능 콘크리트의 역학적 특성 평가)

  • Ryu, Gum-Sung;Koh, Kyung-Taek;Kang, Su-Tae;Park, Jung-Jun;Kim, Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.353-356
    • /
    • 2008
  • UHPC which was a structural material exhibiting very remarkable mechanical performances with compressive strength, tensile strength and flexural strength rising up to 200MPa, 15MPa and 35MPa, respectively. In addition, this material presents exceptional durability regard to the very low diffusion and penetration speeds of noxious substances like chloride ions This study was carry out to evaluate the effect of flexural behavior according to steel fiber type in UHPC. The results is showing that the steel fiber type have remarkable influence flexural strength Addition to it is showing that steel fiber type made little difference in the first cracking strength but considerable gap in the ultimate flexural strength to use the steel fiber of wave type.

  • PDF

The Evaluation of Flexural Performance in UHPC(Ultra High Performance Concrete) according to Placement Methods (타설방법에 따른 초고성능 콘크리트의 휨성능 평가)

  • Ryu, Gum-Sung;Kang, Su-Tae;Park, Jung-Jun;Ahn, Ki-Hong;Koh, Kyung-Taek;Kim, Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.357-360
    • /
    • 2008
  • UHPC which was a structural material exhibiting very remarkable mechanical performances with compressive strength, tensile strength and flexural strength rising up to 200MPa, 15MPa and 35MPa, respectively. In addition, this material presents exceptional durability regard to the very low diffusion and penetration speeds of noxious substances like chloride ions This study was carry out to evaluate the effect of flexural behavior according to placement method in UHPC. The results is showing that the placement methods have remarkable influence flexural strength Addition to it is showing that the placement methods made little difference in the first cracking strength but considerable gap up to 2 or 3 times in the ultimate flexural strength.

  • PDF

A Study on the Method of preventing from Reduction of AF Track Circuit Signal Current on a Ferroconcrete Roadbed (철근콘크리트 도상에서 AF 궤도회로 신호전류 저감방지대책에 관한 연구)

  • Hong, Hyo-Sik;Yoo, Kwang-Kiun;Rho, Sung-Chan
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.5
    • /
    • pp.500-503
    • /
    • 2010
  • Until now, the track circuit with railroad which is a part of an electrical circuit wad used only for the detection of the train location, but as train speed is up to be higher, in order to overcome the limits of ground signal system the railway signal system has changed from the ground signal system to a cab signal system. The power source of the track circuit has also changed from a direct current or a high voltage impulse to an alternating current with high frequency which is a part of the audio frequency. To improve the maintenanability and according to the environment condition, the railway roadbed is rapidly changed to the ferroconcrete roadbed. In case of a track circuit to use an alternating current with high frequency as power source at a ferroconcrete roadbed, the characteristic of the track circuit is brought on a change from a loss of the magnetic combination instead of a leakage current from electric insulation which was caused by the reinforcing iron pod with lattice shape for durability. This paper is shown the influence and the loss of the signal current at AF track circuit on a ferroconcrete in the simulation sheets and presented a proposal for the preventive method from reduction of signal current.

A Study on Steel Properties for Floating Photovoltaic System Structure (수상태양광 구조물의 강재특성에 관한 연구)

  • Choi, Young-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.5400-5405
    • /
    • 2014
  • For the development of a floating photovoltaic system, materials with light weight and high tensile strength must be applied to reduce the burden on buoyancy, and material characteristics with high resistance to corrosion in water environment is required. Accordingly, a new high strength steel material with improved strength, durability, manufacturability, and weldability that are appropriate for floating photovoltaic system structures is needed. This paper reports the results of a mechanical load test and steel corrosion test on general steel (SS400) and high strength steel (POSH 690) for the selection of an appropriate steel material for a floating photovoltaic system. The results of a test on new high strength steel revealed excellent mechanical performance compared to general steel. The new steel material was manufactured for use in an actual site, and the weight was reduced by approximately 30~40% compared to existing general steel.

Development and Application of Ultra High Performance Concrete (초고성능 콘크리트의 개발과 활용)

  • Kim, Sung-Wook;Park, Jung-Jun;Kang, Su-Tae;Ryu, Gum-Sung;Koh, Gyung-Taek;Lee, Jang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1117-1120
    • /
    • 2008
  • In order to develop an Ultra High Performance Concrete (UHPC) suited to the Korean conditions, KICT has carried out several parts of research in the field of UHPC from 2003. KICT developed UHPC which was a structural material exhibiting very remarkable mechanical performances with compressive strength, tensile strength and flexural strength rising up to 200MPa, 15MPa and 35MPa, respectively. In addition, this material presents exceptional durability regard to the very low diffusion and penetration speeds of noxious substances like chloride ions. This 200MPa strength concrete has been effectively adopted for the construction of bridges like Sherbrooke Bridge in Canada in 1997, Sunyu Bridge in Korea in 2002, Meata Bridge in Japan in 2003, Sheperds Guelly Creek Bridge, the first ultra-high strength concrete highway bridge in Australia in 2004 and, more recently in 2005, Mars Hill highway bridge in USA in 2005. The construction of structures using ultra high performance concrete is a worldwide development trend of concrete technology for the construction of advanced facilities in the 21st century.

  • PDF

Laboratory Performance Evaluation of Alternative Dowel Bar for Jointed Concrete Pavements (콘크리트 포장용 고내구성 대체 다웰바의 실내공용성 평가)

  • Park, Seong Tae;Park, Jun Young;Lee, Jae Hoon;Kim, Hyung Bae
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.23-36
    • /
    • 2013
  • PURPOSES: The problem under this circumstance is that the erosion not only drops strength of the steel dowel bar but also comes with volume expansion of the steel dowel bar which can reduce load transferring efficiency of the steel dowel bar. To avoid this erosion problem, alternative dowers bars are developed. METHODS: In this study, the bearing stresses between the FRP tube dowel bar and concrete slab are calculated and compared with its allowable bearing stress to check its structural stability in the concrete pavement. These comparisons are conducted with several cross-sections of FRP tube dowel bars. Comprehensive laboratory tests including the shear load-deflection test on a full-scale specimen and the full-scale accelerated joint concrete pavement test are conducted and the results were compared with those from the steel dowel bar. RESULTS: In all cross-sections of FRP tube dowel bars, computed bearing stresses between the FRP tube dowel bar and concrete slab are less than their allowable stress levels. The pultrusion FRP-tube dowel bar show better performance on direct shear tests on full-scale specimen and static compression tests at full-scale concrete pavement joints than prepreg and filament-winding FRP-tube dowel bar. CONCLUSIONS: The FRP tube dowel bars as alternative dowel bar are invulnerable to erosion that may be caused by moisture from masonry joint or bottom of the pavement system. Also, the pultrusion FRP-tube dowel bar performed very well on the laboratory evaluation.

An Experimental Study on the Mechanical and Fire Resistance Properties of ECC Fire Resistance Panel (ECC내화패널의 역학 및 내화특성에 관한 실험적 연구)

  • Lee, Sang-Soo;Kang, Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.2
    • /
    • pp.89-96
    • /
    • 2010
  • This study was based on an experiment that examines the manufacture and performance of fiber-reinforced cement composite panels. The conclusions were drawn after testing the mechanical properties and durability characteristics of fiber-reinforced mortar, and the mechanical properties and fire resistance of ECC fire resistant column panels. It was found that the fluidity of CEL fiber was lower than that of PVA and NY fiber. The amount of air increased slightly as the combination of fibers caused the number of fine pores to increase. It was found that the mechanical performance and deformability of high strength concrete could be improved through the confinement effect of ECC fire resistant column panels. Through continuous studies on the manufacturing and field construction methods of fire resistant column panels, a new PC method that eliminates weakness in the existing processes may be developed for skyscrapers.

Manufacture of Multi-Layered High Efficiency Water Treatment Filter (다층구조의 고효율 수처리용 필터 제조)

  • Sonn, Jong Suk;Joung, Hyun-Sub;Yoo, Young-Sang;Hong, Joo-Hee
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.841-846
    • /
    • 2019
  • The purpose of this work is to manufacture of high efficiency water-treatment filter that is equal to imported products or even higher in terms of quality and even develop the manufacturing process. The filtration efficiency of the developed filter was 93~99%, which was better or similar to that of domestic filter (82~97.5%) and Japanese filter (92.5~98%). The pressure loss(durability) along with the amount of contaminant particles was significantly smaller than that of domestic products, and showed $0.1kg_f/cm^2$ less than that of Japanese products. In addition, at the cost side of production, the developed cartridge filter can be produced with 50% of the current price compared to that of Japanese products. Therefore, it is possible to replace the imported Japanese products as well as domestic products.