• Title/Summary/Keyword: 계획표적체적

Search Result 95, Processing Time 0.027 seconds

3D-Conformal Radiotherapy for Head and Neck Cancers at Asan Medical Center (두경부종양에서 3차원 입체조형치료의 서울아산병원 경험)

  • Lee Sang-Wook;Chang Hye-Sook;Ahn Seung-Do;Yi Byong-Yong;Choi Eun-Kyung;Nho Young-Ju;Back Geum-Mun;Kim Jong-Hoon
    • Korean Journal of Head & Neck Oncology
    • /
    • v.21 no.2
    • /
    • pp.151-157
    • /
    • 2005
  • 목적: 다양한 발생부위에서 발생한 두경부종양을 대상으로 3차원 입체조형치료를 시도하여 표적체적 내 선량균일성과 주변장기의 선량분포변하를 알아보고자 하였다. 대상 및 방법: 1995년 1월부터 1996년 12월까지 3차원 입체조형치료를 시행 받은 38명에 분석을 시행하였다. 3차원 입체조형 치료는 동일평면 또는 비동일평면상에서 4개에서 14개의 조사면 수로 시행되었다. 3차원 입체조형치료계획시 표적 체적에 $50{\sim}82Gy$의 선량을 처방하였고, 이하선 안구, 척수, 측두하악관절 등을 보호하고자 하였다. 3차원 입체조형치료 계획을 기존의 2차원 치료계획과 비교하기 위하여 표적체적과 주변정상자기의 선량체적히스토그램, 평균선량, 표적체적 내에서 처방선량의 $95{\sim}105%$의 선량이 분포하는 체적을 비교하였다 치료계획에서 실제 치료시까지 소용되는 비용효과를 비교하였다. 대상환자의 평균추적기간은 34개월이었다. 결 과: 3차원 입체조형시료는 2차원 치료에 비해서 표적체적내 평균선량이 평균 10% 증가하였고, 주변정장기에 조사되는 방사선량이 현저히 감소됨을 관찰할 수 있었고 표적체적에 대한 등선량 곡선 분포가 우수함을 관찰할 수 있었다. 결 론: 3차원 입체조형치료는 두경부종양에서 표적체적의 선량 균일성이 증가하였고, 주변장기의 보존이 가능할 것으로 생각되었다. 따라서 본 저자들은 3차원 입체조형치료가 두경부종양에서 국소제어율과 무질병생존율 향상에 기여할 것으로 생각하였다.

Difference in the Set-up Margin between 2D Conventional and 3D CT Based Planning in Patients with Early Breast Cancer (조기유방암환자의 이차원치료계획과 삼차원치료계획의 방사선조사범위의 차이)

  • Jo, Sun-Mi;Chun, Mi-Son;Kim, Mi-Hwa;Oh, Young-Taek;Kang, Seung-Hee;Noh, O-Kyu
    • Radiation Oncology Journal
    • /
    • v.28 no.3
    • /
    • pp.177-183
    • /
    • 2010
  • Purpose: Simulation using computed tomography (CT) is now widely available for radiation treatment planning for breast cancer. It is an important tool to help define the tumor target and normal tissue based on anatomical features of an individual patient. In Korea, most patients have small sized breasts and the purpose of this study was to review the margin of treatment field between conventional two-dimensional (2D) planning and CT based three-dimensional (3D) planning in patients with small breasts. Materials and Methods: Twenty-five consecutive patients with early breast cancer undergoing breast conservation therapy were selected. All patients underwent 3D CT based planning with a conventional breast tangential field design. In 2D planning, the treatment field margins were determined by palpation of the breast parenchyma (In general, the superior: base of the clavicle, medial: midline, lateral: mid - axillary line, and inferior margin: 2 m below the inframammary fold). In 3D planning, the clinical target volume (CTV) ought to comprise all glandular breast tissue, and the PTV was obtained by adding a 3D margin of 1 cm around the CTV except in the skin direction. The difference in the treatment field margin and equivalent field size between 2D and 3D planning were evaluated. The association between radiation field margins and factors such as body mass index, menopause status, and bra size was determined. Lung volume and heart volume were examined on the basis of the prescribed breast radiation dose and 3D dose distribution. Results: The margins of the treatment field were smaller in the 3D planning except for two patients. The superior margin was especially variable (average, 2.5 cm; range, -2.5 to 4.5 cm; SD, 1.85). The margin of these targets did not vary equally across BMI class, menopause status, or bra size. The average irradiated lung volume was significantly lower for 3D planning. The average irradiated heart volume did not decrease significantly. Conclusion: The use of 3D CT based planning reduced the radiation field in early breast cancer patients with small breasts in relation to conventional planning. Though a coherent definition of the breast is needed, CT-based planning generated the better plan in terms of reducing the irradiation volume of normal tissue. Moreover it was possible that 3D CT based planning showed better CTV coverage including postoperative change.

Verification of Gated Radiation Therapy: Dosimetric Impact of Residual Motion (여닫이형 방사선 치료의 검증: 잔여 움직임의 선량적 영향)

  • Yeo, Inhwan;Jung, Jae Won
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.128-138
    • /
    • 2014
  • In gated radiation therapy (gRT), due to residual motion, beam delivery is intended to irradiate not only the true extent of disease, but also neighboring normal tissues. It is desired that the delivery covers the true extent (i.e. clinical target volume or CTV) as a minimum, although target moves under dose delivery. The objectives of our study are to validate if the intended dose is surely delivered to the true target in gRT and to quantitatively understand the trend of dose delivery on it and neighboring normal tissues when gating window (GW), motion amplitude (MA), and CTV size changes. To fulfill the objectives, experimental and computational studies have been designed and performed. A custom-made phantom with rectangle- and pyramid-shaped targets (CTVs) on a moving platform was scanned for four-dimensional imaging. Various GWs were selected and image integration was performed to generate targets (internal target volume or ITV) for planning that included the CTVs and internal margins (IM). The planning was done conventionally for the rectangle target and IMRT optimization was done for the pyramid target. Dose evaluation was then performed on a diode array aligned perpendicularly to the gated beams through measurements and computational modeling of dose delivery under motion. This study has quantitatively demonstrated and analytically interpreted the impact of residual motion including penumbral broadening for both targets, perturbed but secured dose coverage on the CTV, and significant doses delivered in the neighboring normal tissues. Dose volume histogram analyses also demonstrated and interpreted the trend of dose coverage: for ITV, it increased as GW or MA decreased or CTV size increased; for IM, it increased as GW or MA decreased; for the neighboring normal tissue, opposite trend to that of IM was observed. This study has provided a clear understanding on the impact of the residual motion and proved that if breathing is reproducible gRT is secure despite discontinuous delivery and target motion. The procedures and computational model can be used for commissioning, routine quality assurance, and patient-specific validation of gRT. More work needs to be done for patient-specific dose reconstruction on CT images.

Evaluation of Dose Variation according to Air Gap in Thermoplastic Immobilization Device in Carbon Ion (탄소입자 치료 시 열가소성 고정기구의 공기층에 따른 선량 변화 평가)

  • Ye-jin Na;Ji-Won Jang;Se-Wuk Jang;Hyo-Kuk Park;Sang-Kyu Lee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.35
    • /
    • pp.33-39
    • /
    • 2023
  • Purpose: The purpose of this study is to find out the dose variation according to thickness of the air gap between the patient's body surface and immobilization device in the treatment plan. Materials and Methods : Four conditions were created by adjusting the air gap thickness using 5 mm bolus, ranging from 0 mm to 3 mm bolus. Immobilization was placed on top in each case. And computed tomography was used to acquire images. The treatment plan that 430 cGy (Relative Biological Effectiveness,RBE) is irradiated 6 times and the dose of 2580 cGy (RBE) is delivered to 95% of Clinical Target Volume (CTV). The dose on CTV was evaluated by Full Width Half Maximum (FWHM) of the lateral dose profile and skin dose was evaluated by Dose Volume Histogram (DVH). Result: Results showed that the FWHM values of the lateral dose profile of CTV were 4.89, 4.86, 5.10, and 5.10 cm. The differences in average values at the on the four conditions were 3.25±1.7 cGy (RBE) among D95% and 1193.5±10.2 cGy (RBE) among D95% respectively. The average skin volume at 1% of the prescription dose was 83.22±4.8%, with no significant differences in both CTV and skin. Conclusion: When creating a solid-type immobilization device for carbon particle therapy, a slight air gap is recommended to ensure that it does not extend beyond the dose application range of the CTV.

  • PDF

Evaluation of Dose Distributions calculated with ITV Measurement Plan Data and PTV Measurement plan Data under the condition of Respiratory Motion during 3D for ABD Cancer (내부표적체적 기반의 치료계획과 호흡연동 기법을 적용한 치료계획과의 선량비교 분석)

  • Park, Ho-Chun;Han, Jae-Bok;Song, Jong-Nam;Choi, Nam-Gil
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2014.11a
    • /
    • pp.227-228
    • /
    • 2014
  • 방사선치료의 발전으로 3차원치료보다 진보된 호흡연동방사선치료가 시행되어지고 있다. 호흡의 규칙성과 환자의 위치 재현성이 중요한 치료적응 인자이며, 호흡연동 방사선치료의 효율을 높일 수 있는 지표이다. 국가암통계상 고령의 암환자가 증가하며, 수술, 화학요법을 병행하는 암 치료법이 널리 이용이 되고 있다. 고식적인 치료를 요하는 고령의 복부 암 환자분들에 호흡연동 방사선치료법을 사용하는데 에는 호흡의 불규칙성과 체위의 재현성의 문제점으로 인한 치료 효율의 저하를 가져온다. 본 연구에서는 호흡에 의한 종양 움직임이 있는 방사선 치료에서 내부표적체적 기반의 치료계획과 호흡연동 기법을 적용한 치료계획과의 선량비교 분석하였다. 2가지 치료법 모두 정상조직 보호선량에 부합한 것으로 나타났으며 치료체적은 처방선량의 95%이상 포함된 선량분포로 적합하였다. ITV 설정을 통한 3D Plan은 고식적 치료을 목적으로 하는 고령의 환자, 체위 및 호흡의 불안정성 환자에게 처방선량의 95% 이상의 4D Plan의 치료법 보다 짧은 시간에 치료함으로써 치료효율을 높일 수 있을 거라 사료된다. 다만 정상조직보호선량(NTCP)에 부합하는지에 대한 평가가 전제되어야 한다.

  • PDF

A Comparative Study of Radiation Therapy Planning between Volumetric-Modulated Arc Therapy and Three-Dimensional Conformal Radiotherapy in Nasopharyngeal Cancer (비인두암의 방사선치료 시 삼차원입체조형 치료기법과 용적세기조절회전치료기법의 비교연구)

  • Kim, Ji-Sung;Lee, Seok-Ho;Lee, Seung-Heon;Kim, Hye-Young;Choi, Jin-Ho;Lee, Kyu-Chan;Kim, Dong-Young
    • Korean Journal of Head & Neck Oncology
    • /
    • v.26 no.2
    • /
    • pp.171-177
    • /
    • 2010
  • 연구목적 : 비인두암 환자들을 대상으로 방사선치료 시 삼차원입체조형치료기법과 용적세기조절회전치료기법을 비교하고 이하선을 포함한 정상조직 보호에 있어 그 차이점을 알아 보고자 본 연구를 시행하였다. 대상 및 방법 : 비인두암 환자 5명을 대상으로 치료계획용 CT(computed tomography)를 시행 후 삼차원입체조형방사선치료계획 과 용적세기조절회전치료계획을 시행하였다. 이를 바탕으로 얻은 선량분포, conformity index(CI) 그리고 선량체적 히스토그램을 통해 손상위험장기(organ at risk)와 계획용표적체적(planning target volume)을 비교 분석하였다. 결 과 : 분석결과 이하선에 조사되는 평균선량이 용적세기조절회전치료계획에서는 43.9%로 삼차원입체조형치료계획에서의 89.4% 보다 유의하게(p=0.043) 감소하였다. 계획용표적체적 conformity index의 경우 용적세기조절회전치료계획 (CI=1.06)에서 삼차원입체조형치료계획(CI=2.55) 보다 유의하게(p=0.043) 향상된 결과를 보였다. 결 론 : 비인두암 환자에서 용적세기조절회전 치료계획 시 삼차원입체조형치료계획 보다 유의하게 이하선에 평균선량이 줄었고 계획용 표적체적에 대한 conformity도 유의하게 향상되는 결과를 보였다. 본 연구가 적은 수의 환자를 대상으로 하였으나 용적세기조절회전치료기법을 시행 시 구강건조증의 발생을 줄일 수 있을 것으로 기대된다. 향후 더 많은 환자군을 대상으로 한 임상연구가 필요할 것으로 사료된다.

Radiation Treatment Planning Evaluation by Internal Target Volume Settings (내부표적체적 설정을 통한 방사선치료계획 평가)

  • Park, Ho-Chun;Han, Jae-Bok;Choi, Nam-Gil
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.8
    • /
    • pp.416-423
    • /
    • 2015
  • The study was conducted targeting 25 patients who underwent the respiratory gated radiation therapy in the abdominal region at Radiation Oncology of a University Hospital from December 2013 to June 2014 and types of cancer included liver(64%), CBD(8%), gastric(8%), GB(8%), pancreas(8%), SMA(4%). The means of ITV and PTV volume are 471.44 cm3 and 425.48 cm3, showing an increase in volume. Normal tissue volume was also found to have increased due to the increase of the section selected from PTV section to ITV section. Right kidney showed a significant increase in differences between increase in normal tissue volume, increase in target volume and increase in therapy irradiation area and difference between the means of dose applied to normal tissue. There was no significant difference in the mean dose applied to normal tissue according to the respiratory average. Both kidneys showed a significant difference in the difference between mean doses of target moving and normal tissue. In this study, both therapy methods through PTV section and ITV section volume setting were appropriate for protection doses of normal tissue and distributed over 95% of the prescribed dose and therefore, it is considered to be okay to be optionally used depending on the patient's therapeutic purpose. But in order to minimize the unexpected side effect, the plan of PTV section and ITV section should be established and used by evaluating normal tissue protection dose.

Evaluation of Dose Distributions Recalculated with Per-field Measurement Data under the Condition of Respiratory Motion during IMRT for Liver Cancer (간암 환자의 세기조절방사선치료 시 호흡에 의한 움직임 조건에서 측정된 조사면 별 선량결과를 기반으로 재계산한 체내 선량분포 평가)

  • Song, Ju-Young;Kim, Yong-Hyeob;Jeong, Jae-Uk;Yoon, Mee Sun;Ahn, Sung-Ja;Chung, Woong-Ki;Nam, Taek-Keun
    • Progress in Medical Physics
    • /
    • v.25 no.2
    • /
    • pp.79-88
    • /
    • 2014
  • The dose distributions within the real volumes of tumor targets and critical organs during internal target volume-based intensity-modulated radiation therapy (ITV-IMRT) for liver cancer were recalculated by applying the effects of actual respiratory organ motion, and the dosimetric features were analyzed through comparison with gating IMRT (Gate-IMRT) plan results. The ITV was created using MIM software, and a moving phantom was used to simulate respiratory motion. The doses were recalculated with a 3 dose-volume histogram (3DVH) program based on the per-field data measured with a MapCHECK2 2-dimensional diode detector array. Although a sufficient prescription dose covered the PTV during ITV-IMRT delivery, the dose homogeneity in the PTV was inferior to that with the Gate-IMRT plan. We confirmed that there were higher doses to the organs-at-risk (OARs) with ITV-IMRT, as expected when using an enlarged field, but the increased dose to the spinal cord was not significant and the increased doses to the liver and kidney could be considered as minor when the reinforced constraints were applied during IMRT plan optimization. Because the Gate-IMRT method also has disadvantages such as unsuspected dosimetric variations when applying the gating system and an increased treatment time, it is better to perform a prior analysis of the patient's respiratory condition and the importance and fulfillment of the IMRT plan dose constraints in order to select an optimal IMRT method with which to correct the respiratory organ motional effect.

Study of Variation of Internal Taget Volume between 4DCT and Slow-CT in Respiratory Patterns Using Respiratory Motion Phantom (호흡 동조 구동 팬톰을 이용한 호흡패턴에 따른 4DCT, Slow-CT의 내부표적체적 변화 연구)

  • Lee, Soon Sung;Choi, Sang Hyoun;Min, Chul Kee;Ji, Young Hoon;Kim, Mi-Sook;Yoo, Hyoung Jun;Kim, Chan Hyeong;Kim, Kum Bae
    • Progress in Medical Physics
    • /
    • v.25 no.1
    • /
    • pp.53-63
    • /
    • 2014
  • The objective of this study is to investigate the difference of ITV lengths and ITVs between 4DCT and Slow-CT images according to respiratory patterns using a respiratory motion phantom. The respiratory periods 1~4 s and target motion 1~3 cm were applied on each respiratory pattern. 4DCT and Slow-CT images were acquired for 3 times. 4DCT and Slow-CT ITVs were measured with contouring the target in the Eclipse RTP system. The measured ITV lenghts and ITVs in 4DCT and Slow-CT images were compared to the known values. For the ITV lengths and ITVs in the 4DCT, the difference of them were reduced as the respiratory period is longer and target motion is shorter. For the Slow-CT, there was same tendency with change in 4DCT ITV lengths and ITVs about target motion. However, the difference of ITV lengths and ITVs for the respiratory periods were the lowest in respiratory period 1 second and different slightly within respiratory period 2-4 seconds. According to the respiratory patterns, pattern A had the highest reproducibility. Pattern B, C and D were showed the difference similar to each other. However, for pattern E, the reproducibility was the lowest compared with other four patterns. The difference of ITV lengths and ITVs between Slow-CT and 4DCT was increased by increasing the respiratory periods and target motion for all respiratory patterns. When the difference of Slow-CT ITV lengths and ITVs were compared with that of 4DCT ITV lengths and ITVs, Slow-CT ITV lengths and ITVs were approximately 22 % smaller than 4DCT, and the representations of target were different in each pattern. In case of pattern A, B and C, length difference was 3 mm at S (superior) and I (inferior) direction, and the length difference of pattern D was 1.45 cm at only "I" direction whereas the length difference of pattern E was 5 mm longer in "S" direction than "I" direction. Therefore, the margin in SI directions should be determined by considering the respiratory patterns when the margin of Slow-CT is compensated for 4DCT ITV lengths. Afterward, we think that the result of this study will be useful to analyze the ITV lengths and ITVs from the CT images on the basis of the patient respiratory signals.

Analysis of Dose Delivery Error in Conformal Arc Therapy Depending on Target Positions and Arc Trajectories (동적조형회전조사 시 표적종양의 위치변위와 조사반경의 변화에 따른 선량전달 오류분석)

  • Kang, Min-Young;Lee, Bo-Ram;Kim, You-Hyun;Lee, Jeong-Woo
    • Journal of radiological science and technology
    • /
    • v.34 no.1
    • /
    • pp.51-58
    • /
    • 2011
  • The aim of the study is to analyze the dose delivery error depending on the depth variation according to target positions and arc trajectories by comparing the simulated treatment planning with the actual dose delivery in conformal arc therapy. We simulated the conformal arc treatment planning with the three target positions (center, 2.5 cm, and 5 cm in the phantom). For the experiments, IMRT body phantom (I’mRT Phantom, Wellhofer Dosimetry, Germany) was used for treatment planning with CT (Computed Tomography, Light speed 16, GE, USA). The simulated treatment plans were established by three different target positions using treatment planning system (Eclipse, ver. 6.5, VMS, Palo Alto, USA). The radiochromic film (Gafchromic EBT2, ISP, Wayne, USA) and dose analysis software (OmniPro-IMRT, ver. 1.4, Wellhofer Dosimetry, Germany) were used for the measurement of the planned arc delivery using 6 MV photon beam from linear accelerator (CL21EX, VMS, Palo Alto, USA). Gamma index (DD: 3%, DTA: 2 mm) histogram and dose profile were evaluated for a quantitative analysis. The dose distributions surrounded by targets were also compared with each plans and measurements by conformity index (CI), and homogeneity index (HI). The area covered by 100% isodose line was compared to the whole target area. The results for the 5 cm-shifted target plan show that 23.8%, 35.6%, and 37% for multiple conformal arc therapy (MCAT), single conformal arc therapy (SCAT), and multiple static beam therapy, respectively. In the 2.5 cm-shifted target plan, it was shown that 61%, 21.5%, and 14.2%, while in case of center-located target, 70.5%, 14.1%, and 36.3% for MCAT, SCAT, and multiple static beam therapy, respectively. The values were resulted by most superior in the MCAT, except the case of the 5 cm-shifted target. In the analysis of gamma index histogram, it was resulted of 37.1, 27.3, 29.2 in the SCAT, while 9.2, 8.4, 10.3 in the MCAT, for the target positions of center, shifted 2.5 cm and 5 cm, respectively. The fail proportions of the SCAT were 2.8 to 4 times as compared to those of the MCAT. In conclusion, dose delivery error could be occurred depending on the target positions and arc trajectories. Hence, if the target were located in the biased position, the accurate dose delivery could be performed through the optimization of depth according to arc trajectory.