DOI QR코드

DOI QR Code

Difference in the Set-up Margin between 2D Conventional and 3D CT Based Planning in Patients with Early Breast Cancer

조기유방암환자의 이차원치료계획과 삼차원치료계획의 방사선조사범위의 차이

  • Jo, Sun-Mi (Department of Radiation Oncology, Ajou University School of Medicine) ;
  • Chun, Mi-Son (Department of Radiation Oncology, Ajou University School of Medicine) ;
  • Kim, Mi-Hwa (Department of Radiation Oncology, Ajou University School of Medicine) ;
  • Oh, Young-Taek (Department of Radiation Oncology, Ajou University School of Medicine) ;
  • Kang, Seung-Hee (Inje University, Ilsan-Paik Hospital) ;
  • Noh, O-Kyu (Department of Radiation Oncology, Ajou University School of Medicine)
  • 조선미 (아주대학교 의과대학 방사선종양학교실) ;
  • 전미선 (아주대학교 의과대학 방사선종양학교실) ;
  • 김미화 (아주대학교 의과대학 방사선종양학교실) ;
  • 오영택 (아주대학교 의과대학 방사선종양학교실) ;
  • 강승희 (인제대학교 일산백병원 방사선종양학과) ;
  • 노오규 (아주대학교 의과대학 방사선종양학교실)
  • Received : 2010.06.04
  • Accepted : 2010.08.13
  • Published : 2010.09.30

Abstract

Purpose: Simulation using computed tomography (CT) is now widely available for radiation treatment planning for breast cancer. It is an important tool to help define the tumor target and normal tissue based on anatomical features of an individual patient. In Korea, most patients have small sized breasts and the purpose of this study was to review the margin of treatment field between conventional two-dimensional (2D) planning and CT based three-dimensional (3D) planning in patients with small breasts. Materials and Methods: Twenty-five consecutive patients with early breast cancer undergoing breast conservation therapy were selected. All patients underwent 3D CT based planning with a conventional breast tangential field design. In 2D planning, the treatment field margins were determined by palpation of the breast parenchyma (In general, the superior: base of the clavicle, medial: midline, lateral: mid - axillary line, and inferior margin: 2 m below the inframammary fold). In 3D planning, the clinical target volume (CTV) ought to comprise all glandular breast tissue, and the PTV was obtained by adding a 3D margin of 1 cm around the CTV except in the skin direction. The difference in the treatment field margin and equivalent field size between 2D and 3D planning were evaluated. The association between radiation field margins and factors such as body mass index, menopause status, and bra size was determined. Lung volume and heart volume were examined on the basis of the prescribed breast radiation dose and 3D dose distribution. Results: The margins of the treatment field were smaller in the 3D planning except for two patients. The superior margin was especially variable (average, 2.5 cm; range, -2.5 to 4.5 cm; SD, 1.85). The margin of these targets did not vary equally across BMI class, menopause status, or bra size. The average irradiated lung volume was significantly lower for 3D planning. The average irradiated heart volume did not decrease significantly. Conclusion: The use of 3D CT based planning reduced the radiation field in early breast cancer patients with small breasts in relation to conventional planning. Though a coherent definition of the breast is needed, CT-based planning generated the better plan in terms of reducing the irradiation volume of normal tissue. Moreover it was possible that 3D CT based planning showed better CTV coverage including postoperative change.

목 적: 유방암 치료를 위한 방사선치료계획에 전산화단층촬영을 이용한 모의치료가 널리 이용되고 있다. 이는 환자 개개인의 해부학적 특징에 기반하여 종양 표적과 정상 조직을 정의할 수 있다. 본 연구는 일반적으로 유방 크기가 작은 한국인 유방암 환자에서 적용하는 방사선치료계획 방법에 따라 치료용적 및 치료범위에 차이가 있는지를 알아보기 위해 시행하였다. 대상 및 방법: 2008년 11월부터 2009년 1월까지 조기유방암으로 유방보존술을 시행 받은 25명의 환자를 대상으로 통상적인 접면조사의 이차원치료 계획과 전산화단층촬영을 기반으로 한 삼차원치료계획을 시행하였다. 이차원 치료계획에서 방사선조사영역의 경계는 유방실질을 촉지하여 결정하였고 위쪽으로는 쇄골의 바로 아래, 내측은 몸의 정중선, 외측은 중심 액와선 그리고 아래쪽은 유방밑주름에서 2 cm 아래에 표시하였다. 삼차원치료계획에서 임상표적체적은 모든 유선 조직을 포함하였고 계획용 표적체적은 임상표적체적에서 피부 쪽을 제외한 모든 방향으로 1 cm의 여유를 두어 결정하였다. 이차원과 삼차원치료계획 간의 조사영역의 경계 차이 및 동등조사영역의 차이를 확인하고 신체질량지수, 폐경 여부 및 유방크기의 관련성을 평가하였다. 그리고 선량분포로 지정한 유방조사량과 삼차원 선량분포에 기반하여 측정된 조사된 폐용적과 심장용적을 평가하였다. 결 과: 2명의 환자를 제외하고 계획용표적체적(PTV)은 삼차원치료계획이 이차원치료계획보다 모든 방향에서 표시한 방사선조사영역을 감소시켰고 위쪽 경계에서 그 차이값이 가장 컸다. 동등조사영역크기는 한 명을 제외하고 삼차원치료계획에서 이차원치료계획에서보다 작았으며(평균 0.9 cm), 신체질량지수, 폐경 여부 및 유방크기(브래지어 사이즈)와의 관련성은 보이지 않았다. 조사된 폐용적은 삼차원치료계획에서 유의하게 감소하였고, 심장용적 또한 감소하였지만 통계적으로 유의한 차이는 보이지 않았다. 결 론: 통상적인 치료계획과 비교하여 전산화단층촬영을 기반으로 한 삼차원치료계획이 작은 유방을 가진 환자에서 방사선조사영역 및 손상위험장기의 조사량을 줄이면서 수술 후 변화를 포함하여 더 정확한 종양치료가 가능할 수 있음을 보여주었다. 그러나 앞으로 임상표적체적의 정의에 대한 추가적인 연구 및 일반적인 합의가 필요하다.

Keywords

References

  1. Krasin M, McCall A, King S, Olson M, Emami B. Evaluation of a standard breast tangent technique: a dosevolume analysis of tangential irradiation using three-dimensional tools. Int J Radiat Oncol Biol Phys 2000;47:327-333 https://doi.org/10.1016/S0360-3016(00)00449-1
  2. Thilmann C, Zabel A, Nill S, et al. Intensity-modulated radiotherapy of the female breast. Med Dosim 2002;27:79-90 https://doi.org/10.1016/S0958-3947(02)00089-4
  3. van Asselen B, Raaijmakers CP, Hofman P, Lagendijk JJ. An improved breast irradiation technique using threedimensional geometrical information and intensity modulation. Radiother Oncol 2001;58:341-347 https://doi.org/10.1016/S0167-8140(00)00278-4
  4. Vicini FA, Sharpe M, Kestin L, et al. Optimizing breast cancer treatment efficacy with intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 2002;54:1336-1344 https://doi.org/10.1016/S0360-3016(02)03746-X
  5. Halperin EC, Perez CA, Brady LW, Wazer DE, Freeman C. Perez and Brady's Principles and Practice of Radiation Oncology. 5th ed. Philadelphia; Lippincott Williams and Wilkins, 2007:1234-1244
  6. Hurkmans CW, Borger JH, Pieters BR, Russell NS, Jansen EP, Mijnheer BJ. Variability in target volume delineation on CT scans of the breast. Int J Radiat Oncol Biol Phys 2001;50:1366-1372 https://doi.org/10.1016/S0360-3016(01)01635-2
  7. van Asselen B, Schwarz M, van Vliet-Vroegindeweij C, Lebesque JV, Mijnheer BJ, Damen EM. Intensitymodulated radiotherapy of breast cancer using direct aperture optimization. Radiother Oncol 2006;79:162-169 https://doi.org/10.1016/j.radonc.2006.04.010
  8. Gonzalez VJ, Buchholz DJ, Langen KM, et al. Evaluation of two tomotherapy-based techniques for the delivery of whole-breast intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 2006;65:284-290 https://doi.org/10.1016/j.ijrobp.2005.12.044
  9. Mayo CS, Urie MM, Fitzgerald TJ. Hybrid IMRT plans: concurrently treating conventional and IMRT beams for improved breast irradiation and reduced planning time. Int J Radiat Oncol Biol Phys 2005;61:922-932
  10. van der Laan HP, Dolsma WV, Maduro JH, Korevaar EW, Hollander M, Langendijk JA. Three-dimensional conformal simultaneously integrated boost technique for breast-conserving radiotherapy. Int J Radiat Oncol Biol Phys 2007;68:1018-1023 https://doi.org/10.1016/j.ijrobp.2007.01.037
  11. Van Vaerenbergh K, De Gersem W, Vakaet L, et al. Automatic generation of a plan optimization volume for tangential field breast cancer radiation therapy. Strahlenther Onkol 2005;181:82-88 https://doi.org/10.1007/s00066-005-1310-1
  12. Struikmans H, Warlam-Rodenhuis C, Stam T, et al. Interobserver variability of clinical target volume delineation of glandular breast tissue and of boost volume in tangential breast irradiation. Radiother Oncol 2005;76:293-299 https://doi.org/10.1016/j.radonc.2005.03.029
  13. Landis DM, Luo W, Song J, et al. Variability among breast radiation oncologists in delineation of the postsurgical lumpectomy cavity. Int J Radiat Oncol Biol Phys 2007;67:1299- 1308 https://doi.org/10.1016/j.ijrobp.2006.11.026
  14. Krengli M, Sacco M, Loi G, et al. Pulmonary changes after radiotherapy for conservative treatment of breast cancer: a prospective study. Int J Radiat Oncol Biol Phys 2008; 70:1460-1467 https://doi.org/10.1016/j.ijrobp.2007.08.050
  15. Nishioka A, Ogawa Y, Hamada N, Terashima M, Inomata T, Yoshida S. Analysis of radiation pneumonitis and radiation-induced lung fibrosis in breast cancer patients after breast conservation treatment. Oncol Rep 1999;6:513-517
  16. Ooi GC, Kwong DL, Ho JC, et al. Pulmonary sequelae of treatment for breast cancer: a prospective study. Int J Radiat Oncol Biol Phys 2001;50:411-419 https://doi.org/10.1016/S0360-3016(01)01438-9
  17. Hernberg M, Virkkunen P, Maasilta P, et al. Pulmonary toxicity after radiotherapy in primary breast cancer patients: results from a randomized chemotherapy study. Int J Radiat Oncol Biol Phys 2002;52:128-136 https://doi.org/10.1016/S0360-3016(01)01760-6
  18. Jarvenpaa R, Holli K, Pitkanen M, et al. Radiological pulmonary findings after breast cancer irradiation: a prospective study. Acta Oncol 2006;45:16-22 https://doi.org/10.1080/02841860500334921
  19. Gagliardi G, Lax I, Ottolenghi A, Rutqvist LE. Longterm cardiac mortality after radiotherapy of breast cancer: application of the relative seriality model. Br J Radiol 1996;69:839-846 https://doi.org/10.1259/0007-1285-69-825-839
  20. Rutqvist LE, Lax I, Fornander T, Johansson H. Cardiovascular mortality in a randomized trial of adjuvant radiation therapy versus surgery alone in primary breast cancer. Int J Radiat Oncol Biol Phys 1992;22:887-896 https://doi.org/10.1016/0360-3016(92)90784-F
  21. Cuzick J, Stewart H, Rutqvist L, et al. Cause-specific mortality in long-term survivors of breast cancer who participated in trials of radiotherapy. J Clin Oncol 1994;12:447-453