• Title/Summary/Keyword: 계층적 베이지안

Search Result 62, Processing Time 0.03 seconds

A Development of Regional Frequency Model Based on Hierarchical Bayesian Model (계층적 Bayesian 모형 기반 지역빈도해석 모형 개발)

  • Kwon, Hyun-Han;Kim, Jin-Young;Kim, Oon-Ki;Lee, Jeong-Ju
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.1
    • /
    • pp.13-24
    • /
    • 2013
  • The main objective of this study was to develop a new regional frequency analysis model based on hierarchical Bayesian model that allows us to better estimate and quantify model parameters as well as their associated uncertainties. A Monte-carlo experiment procedure has been set up to verify the proposed regional frequency analysis. It was found that the proposed hierarchical Bayesian model based regional frequency analysis outperformed the existing L-moment based regional frequency analysis in terms of reducing biases associated with the model parameters. Especially, the bias is remarkably decreased with increasing return period. The proposed model was applied to six weather stations in Jeollabuk-do, and compared with the existing L-moment approach. This study also provided shrinkage process of the model parameters that is a typical behavior in hierarchical Bayes models. The results of case study show that the proposed model has the potential to obtain reliable estimates of the parameters and quantitatively provide their uncertainties.

Effects of Financial College Tuition Support by Korean Parents using a Hierarchical Bayes Model (계층적 베이즈 모형을 이용한 대학등록금에 대한 부모님의 경제적 지원 영향 분석)

  • Oh, Man-Suk;Oh, Hyun Sook;Oh, Min Jung
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.2
    • /
    • pp.267-280
    • /
    • 2013
  • College tuition is a significant economic, social, and political issue in Korea. We conduct a Bayesian analysis of a hierarchical model to address the factors related to college tuition based on a survey data collected by Statistics Korea. A binary response variable is selected depending on if more than 70% of tuition costs are supported by parents, and a hierarchical Probit model is constructed with areas as groups. A set of explanatory variables is selected from a factor analysis of available variables in the survey. A Markov chain Monte Carlo algorithm is used to estimate parameters. From the analysis results, income and stress are significantly related to college tuition support from parents. Parents with high income tend to support children's college tuition and students with parents' financial support tend to be mentally less stressed; subsequently, this shows that the economic status of parents significantly affects the mental health of college students. Gender, a healthy life style, and college satisfaction are not significant factors. Comparing areas in terms of the degrees of correlation between stress/income and tuition support from parents, students in Kangwon-do are the most mentally stressed when parents' support is limited; in addition, the positive correlation between parents support and income is stronger in big cities compared to provincial areas.

A development of hierarchical bayesian model for changing point analysis at watershed scale (유역단위에서의 연강수량의 변동점 분석을 위한 계층적 Bayesian 분석기법 개발)

  • Kim, Jin-Guk;Kim, Jin-Young;Kim, Yoon-Hee;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.2
    • /
    • pp.75-87
    • /
    • 2017
  • In recent decades, extreme events have been significantly increased over the Korean Peninsula due to climate variability and climate change. The potential changes in hydrologic cycle associated with the extreme events increase uncertainty in water resources planning and designing. For these reasons, a reliable changing point analysis is generally required to better understand regime changes in hydrologic time series at watershed scale. In this study, a hierarchical changing point analysis approach that can apply in a watershed scale is developed by combining the existing changing point analysis method and hierarchical Bayesian method. The proposed model was applied to the selected stations that have annual rainfall data longer than 40 years. The results showed that the proposed model can quantitatively detect the shift in precipitation in the middle of 1990s and identify the increase in annual precipitation compared to the several decades prior to the 1990s. Finally, we explored the changes in precipitation and sea level pressure in the context of large-scale climate anomalies using reanalysis data, for a given change point. It was concluded that the identified large-scale patterns were substantially different from each other.

A Study on the Methodology modelling of Risk Assessment in Road Tunnels (도로터널시설 위험평가 모델링을 위한 방법론 연구)

  • Cho, Inuh;Han, Dae-yong;Kim, Seung-jin;Yoon, Jong-ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.59-73
    • /
    • 2016
  • The demand for subsurface transport is increasing. The users and the operators of road tunnels are exposed to risks with different causes. One main cause, however, is the traffic situation in the event of accidents. The importance of a Quantified Risk Assessment is increasing to quantify the safety of road tunnels and to balance the requirements (capacity, reliability, availability, maintainability and safety) of various stakeholders. Although there are classical methods for risk assessments, such as ETA and FTA. These methods are used for relatively simple cases because it could not relevantly reflect the diversity and relationship of the parameters. Therefore, a quantitative risk assessment based on Bayesian Probabilistic Networks considering interdependence between the parameters of a complex underground system as a double deck tunnel is provided.

A spatial analysis of Neyman-Scott rectangular pulses model using an approximate likelihood function (근사적 우도함수를 이용한 Neyman-Scott 구형펄스모형의 공간구조 분석)

  • Lee, Jeongjin;Kim, Yongku
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1119-1131
    • /
    • 2016
  • The Neyman-Scott Rectangular Pulses Model (NSRPM) is mainly used to construct hourly rainfall series. This model uses a modest number of parameters to represent the rainfall processes and underlying physical phenomena, such as the arrival of storms or rain cells. In NSRPM, the method of moments has often been used because it is difficult to know the distribution of rainfall intensity. Recently, approximated likelihood function for NSRPM has been introduced. In this paper, we propose a hierarchical model for applying a spatial structure to the NSRPM parameters using the approximated likelihood function. The proposed method is applied to summer hourly precipitation data observed at 59 weather stations (Korea Meteorological Administration) from 1973 to 2011.

Ontology-based User Intention Recognition for Proactive Planning of Intelligent Robot Behavior (지능형로봇 행동의 능동적 계획수립을 위한 온톨로지 기반 사용자 의도인식)

  • Jeon, Ho-Cheol;Choi, Joong-Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.86-99
    • /
    • 2011
  • Due to the uncertainty of intention recognition for behaviors of users, the intention is differently recognized according to the situation for the same behavior by the same user, the accuracy of user intention recognition by minimizing the uncertainty is able to be improved. This paper suggests a novel ontology-based method to recognize user intentions, and able to minimize the uncertainties that are the obstacles against the precise recognition of user intention. This approach creates ontology for user intention, makes a hierarchy and relationship among user intentions by using RuleML as well as Dynamic Bayesian Network, and improves the accuracy of user intention recognition by using the defined RuleML as well as the gathered sensor data such as temperature, humidity, vision, and auditory. To evaluate the performance of robot proactive planning mechanism, we developed a simulator, carried out some experiments to measure the accuracy of user intention recognition for all possible situations, and analyzed and detailed described the results. The result of our experiments represented relatively high level the accuracy of user intention recognition. On the other hand, the result of experiments tells us the fact that the actions including the uncertainty get in the way the precise user intention recognition.

A case study of small area estimation about charter and monthly rent price index (소지역모형 추정기법을 활용한 전·월세 추정)

  • Lee, Seung Soo;Park, Won Ran;Chung, Sung Suk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.327-337
    • /
    • 2017
  • In this study we compared three models for small area estimation, Fay-Herriot, Hierarchical Bayses model and spatio-temporal model about charter, monthly rent price index. Charter, monthly rent price of Korea are important issue in these days. Because housing type rapidly changes from self to charter and monthly rent. The accuracy of the estimation was checked on four scales, that is ARB, ASRB, AAB, ASD. In this result, the spatio-temporal model among applied models has most optimal scales about small area estimation of charter and monthly rent index.

A spatiotemporal adjustment of precipitation using radar data and AWS data (레이더와 지상관측소 강우자료를 이용한 시공간 강우 조정 모형)

  • Shin, Tae Sung;Lee, Gyuwon;Kim, Yongku
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.1
    • /
    • pp.39-47
    • /
    • 2017
  • Precipitation is an important component for hydrological and water control study. In general, AWS data provides more accurate but low dense information for precipitation while radar data gives less accurate but high dense information. The objective of this study is to construct adjusted precipitation field based on hierarchical spatial model combining radar data and AWS data. Here, we consider a Bayesian hierarchical model with spatial structure for hourly accumulated precipitation. In addition, we also consider a redistribution of hourly precipitation to 2.5 minute precipitation. Through real data analysis, it has been shown that the proposed approach provides more reasonable precipitation field.

Automatic e-mail Hierarchy Classification using Dynamic Category Hierarchy and Principal Component Analysis (PCA와 동적 분류체계를 사용한 자동 이메일 계층 분류)

  • Park, Sun
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.3
    • /
    • pp.419-425
    • /
    • 2009
  • The amount of incoming e-mails is increasing rapidly due to the wide usage of Internet. Therefore, it is more required to classify incoming e-mails efficiently and accurately. Currently, the e-mail classification techniques are focused on two way classification to filter spam mails from normal ones based mainly on Bayesian and Rule. The clustering method has been used for the multi-way classification of e-mails. But it has a disadvantage of low accuracy of classification and no category labels. The classification methods have a disadvantage of training and setting of category labels by user. In this paper, we propose a novel multi-way e-mail hierarchy classification method that uses PCA for automatic category generation and dynamic category hierarchy for high accuracy of classification. It classifies a huge amount of incoming e-mails automatically, efficiently, and accurately.

  • PDF

Hierarchical Bayesian Model Based Nonstationary Frequency Analysis for Extreme Sea Level (계층적 베이지안 모델을 적용한 극치 해수위 비정상성 빈도 분석)

  • Kim, Yong-Tak;Uranchimeg, Sumiya;Kwon, Hyun-Han;Hwang, Kyu Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.1
    • /
    • pp.34-43
    • /
    • 2016
  • Urban development and population increases are continuously progressed in the coastal areas in Korea, thus it is expected that vulnerability towards coastal disasters by sea level rise (SLR) would be accelerated. This study investigated trend of the sea level data using Mann-Kendall (MK) test, and the results showed that the increasing trends of annual average sea level at 17 locations were statistically significant. For annual maximum extremes, seven locations exhibited statistically significant trends. In this study, non-stationary frequency analysis for the annual extreme data together with average sea level data as a covariate was performed. Non-stationary frequency analysis results showed that sea level at the coastal areas of Korean Peninsula would be increased from a minimum of 60.33 mm to a maximum of 214.90 mm by 2100.