• 제목/요약/키워드: 계층적 기계학습

검색결과 50건 처리시간 0.027초

연합 학습에서 엣지 디바이스를 위한 계층적 전문가 혼합 (Hierarchical Mixture-of-Experts for Edge Device in Federated Learning)

  • 김재헌;최봉준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 추계학술발표대회
    • /
    • pp.784-787
    • /
    • 2024
  • 연합 학습은 최근 기계 학습 분야에서 발생할 수 있는 다양한 문제들을 해결했지만, 학습의 주체가 서버에서 클라이언트로 이동함에 따라 클라이언트 장치의 컴퓨팅 자원의 한계가 새로운 문제로 부각되었다. 클라이언트의 장치는 중앙 집중적 서버와 비교하여 상대적으로 적은 컴퓨팅 자원을 보유하고 있으며, 특히 엣지 디바이스와 같은 클라이언트의 장치는 현저히 적은 컴퓨팅 자원으로 인해 일반적인 연합 학습 절차에 효과적으로 참여하기 어렵다. 본 연구는 클래스 계층 구조와 계층적 전문가 혼합을 통해 엣지 디바이스가 연합학습에 효과적으로 참여할 수 있도록 하였다. 이 기법은 CIFAR-100 과 Tiny ImageNet 데이터셋을 통해 효용성을 입증하였으며, 기존 기법과 비교해 라운드당 학습 시간과 메모리 사용량이 낮음을 보인다.

HiSS: 자기 지도 보조 작업을 결합한 계층적 다중 작업 학습 (Hierarchical multi-task learning with self-supervised auxiliary task)

  • 이승한;박태영
    • 응용통계연구
    • /
    • 제37권5호
    • /
    • pp.631-641
    • /
    • 2024
  • 다중 작업 학습 은 여러 관련 작업들 사이에서 정보를 공유하며 동시에 학습하는 기계 학습에서 널리 사용되는 방법론이다. 본 논문에서는, 동일한 주요 작업(main task) 하에 속한 하위 작업(sub task)들의 계층적 구조를 고려하며 다중 작업 학습을 수행하기 위한 HiSS (hierarchical multi-task learning with self-supervised auxiliary task)라는 새로운 계층적 다중 작업 학습 방법론을 제안한다. 해당 방법론은 하위 작업을 해결하기 위한 표현 벡터를 학습하기 위해 전역적 공유층, 지역적 공유층, 작업 별 특정층을 활용하는 계층적 구조를 가진다. 또한, 제안한 방법론은 계층적 다중 작업 학습을 주요 과제로 하고, 자기 지도 학습을 보조 과제로 사용하여 학습을 동시에 진행한다. 이는 레이블 없이 입력 데이터만을 활용하여 획득한 군집 레이블을 보조 분류 태스크의 가상 레이블로 사용함으로써, 레이블이 없는 데이터로부터도 추가적인 정보를 획득하고자 함이다. 제안된 접근 방식은 AI 동반 로봇이 수집한 노인 개인의 사용자 정보와 활동 로그로 구성된 효돌 데이터를 사용하여 검증되었으며, 시간대와 월을 기반으로 응급 호출을 예측한다. HiSS는 작업의 수에 관계없이 단일모델만을 필요로 하여 작업에 따라 개별 모델을 사용하는 기존의 기계 학습 알고리즘보다 더 효율적이고, 다양한 메트릭을 사용하여 분류 작업에서 우수한 성능을 확인하였다. 해당 알고리즘에 대한 소스 코드는 다음링크에서 확인할 수 있다: https://github.com/seunghan96/HiSS.

특징학습과 계층분류를 이용한 침입탐지 방법 연구 (Intrusion Detection Approach using Feature Learning and Hierarchical Classification)

  • 이한성;정윤희;정세훈
    • 한국전자통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.249-256
    • /
    • 2024
  • 기계학습 기반의 침입탐지 방법론들은 분류하고자 하는 각 클래스에 대해 균등한 많은 학습 데이터가 필요하며, 탐지 또는 분류하려는 공격유형의 추가 시 시스템을 모두 재학습해야 하는 문제점을 가지고 있다. 본 논문에서는 특징학습과 계층분류 방법을 이용하여, 비교적 적은 학습 데이터를 이용한 분류 문제 및 데이터 불균형 문제를 해결하고, 새로운 공격유형의 추가가 쉬운 침입탐지 방법론을 제안하고자 한다. 제안된 시스템은 KDD 침입탐지 데이터를 이용한 실험으로 가능성을 검증하였다.

계층적 분류체계를 위한 자동분류 기법에 관한 연구 (An Experimental Study on Text Categorization for Hierarchical Classification)

  • 이영숙;정영미
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 2001년도 제8회 학술대회 논문집
    • /
    • pp.173-176
    • /
    • 2001
  • 이 연구는 계층적 분류체계를 기반으로 자동분류를 수행할 HiCat 알고리즘을 제안한다. HiCat 알고리즘은 DDC 지식베이스의 주제어와 기계학습을 거친 정보를 동시에 이용하고, 각 계층별로 주제적합성가중치를 구해 최종 주제범주를 결정한다. 이 알고리즘이 최적의 성능을 보이는 조건을 알아보고, 일반 분류기와의 성능 비교를 통해 HiCat 알고리즘을 평가해 보았다.

  • PDF

Deep Learning: 기계학습의 새로운 트랜드

  • 김인중
    • 정보와 통신
    • /
    • 제31권11호
    • /
    • pp.52-57
    • /
    • 2014
  • Deep learning은 많은 수의 계층으로 이루어진 깊은 신경망을 학습하기 위한 연구 분야이다. 지난 수 년 동안 deep learning은 다양한 분야에 적용되어 기존 방법들을 능가하는 높은 성능을 보였으며, 그 결과 기계학습 및 패턴인식 분야에서 가장 중요한 기술적 트랜드가 되어가고 있다. 깊은 신경망의 장점과 그 동안 깊은 신경망의 학습이 어려웠던 이유를 설명하고 이러한 어려움을 극복한 새로운 알고리즘들을 소개한다. 마지막으로 deep learning의 성공적 응용 사례에 대해 소개한다.

귀납적 학습방법들의 분류성능 비교 : 기업신용평가의 경우 (Classification Performance Comparison of Inductive Learning Methods : The Case of Corporate Credit Rating)

  • 이상호;지원철
    • 지능정보연구
    • /
    • 제4권2호
    • /
    • pp.1-21
    • /
    • 1998
  • 귀납적 학습방법들의 분류성능을 비교 평가하기 위하여 대표적 분류문제의 하나인 신용평가 문제를 사용하였다. 분류기로서 사용된 귀납적 학습방법론들은 통계학의 다변량 판별분석(MDA), 기계학습 분야의 C4.5, 신경망의 다계층 퍼셉트론(MLP) 및 Cascade Correlation Network(CCN)의 4 가지이며, 학습자료로는 국내 3개 신용평가기관이 발표한 신용등급 및 공포된 재무제표를 사용하였다. 신용등급 예측의 정확도에 의한 분류성능을 평가하였는데 연도별 평가와 시계열 평가의 두 가지를 실시하였다. Cascade Correlation Network이 가장 좋은 분류성능을 보였지만 4가지 분류기들 사이에 통계적으로 유의한 차이는 발견되지 않았다. 이는 사용된 학습자료가 갖는 한계로 인한 것으로 추정되지만, 성능평가 과정에 있어 학습자료의 전처리 과정이 분류성과의 제고에 매우 유효함이 입증되었다.

  • PDF

계층적 컨볼루션 신경망을 이용한 공작기계의 공구 상태 진단 (Machine Tool State Monitoring Using Hierarchical Convolution Neural Network)

  • 이경민
    • 융합신호처리학회논문지
    • /
    • 제23권2호
    • /
    • pp.84-90
    • /
    • 2022
  • 공작기계 상태 진단은 기계의 상태를 자동으로 감지하는 프로세스이다. 실제로 가공의 효율과 제조공정에서 제품의 품질은 공구 상태에 영향을 받으며 마모 및 파손된 공구는 공정 성능에 보다 심각한 문제를 일으키고 제품의 품질 저하를 일으킬 수 있다. 따라서 적절한 시기에 공구가 교체될 수 있도록 공구 마모 진행 및 공정 중 파손 방지 시스템 개발이 필요하다. 본 논문에서는 공구의 적절한 교체 시기 등을 진단하기 위해 딥러닝 기반의 계층적 컨볼루션 신경망을 이용하여 5가지 공구 상태를 진단하는 방법을 제안한다. 기계가 공작물을 절삭할 때 발생하는 1차원 음향 신호를 주파수 기반의 전력스펙트럼밀도 2차원 영상으로 변환하여 컨볼루션 신경망의 입력으로 사용한다. 학습 모델은 계층적 3단계를 거쳐 5가지 공구 상태를 진단한다. 제안한 방법은 기존의 방법과 비교하여 높은 정확도를 보였고, 실시간 연동을 통해 다양한 공작기계를 모니터링할 수 있는 스마트팩토리 고장 진단 시스템에 활용할 수 있을 것이다.

기계 학습 방법을 이용한 활동 프로파일 기반의 스마트 시니어 분류 모델 개발 (Development of Smart Senior Classification Model based on Activity Profile Using Machine Learning Method)

  • 윤유동;양영욱;지혜성;임희석
    • 한국융합학회논문지
    • /
    • 제8권1호
    • /
    • pp.25-34
    • /
    • 2017
  • 최근 스마트폰의 보급 및 웹 서비스의 도입으로 온라인 사용자들은 대규모의 콘텐츠를 시간과 장소에 관계없이 접할 수 있게 되었다. 그러나 사용자들은 대규모의 콘텐츠 사이에서 원하는 콘텐츠를 찾는 데 어려움을 겪게 되었다. 이러한 문제를 해결하기 위해 다양한 분야에서 사용자 모델링 및 추천 시스템에 대한 연구가 활발하게 수행되었다. 그러나 정보 환경의 변화에 따른 시니어 계층의 적극적인 변화에도 불구하고 시니어 계층에 초점을 맞춘 사용자 모델링 및 추천 시스템에 대한 연구는 매우 부족한 실정이다. 이에 본 논문에서는 기계 학습 방법을 기반으로 스마트 시니어 계층의 선호도를 파악할 수 있는 모델링 방법을 제안하고, 스마트 시니어 분류 모델을 개발한다. 이 결과, 스마트 시니어 계층의 선호도를 파악할 수 있을 뿐만 아니라 스마트 시니어 분류 모델 개발을 통해 시니어 사용자에게 가장 적합한 활동 및 콘텐츠를 제공하는 콘텐츠 추천 연구에 대한 발판을 마련하였다.

휴먼케어 서비스 로봇을 위한 계층적 복합 지식 기반 서비스 선택 엔진 (Service Selection Engine for Human-care Service Robot Based on a Hierarchical Multimodal Knowledge)

  • 장철수;장민수;이재연
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 추계학술발표대회
    • /
    • pp.896-899
    • /
    • 2018
  • 고령사회에 대응하기 위한 휴먼케어 서비스 로봇은 다양한 동적 환경에서 사용자에게 최적의 서비스를 제공하기 위해 서비스 선택 엔진을 요구한다. 서비스 선택 엔진은 로봇이 수집한 각종 원시 데이터를 활용하여 계층적으로 상위 수준의 정보로 가공하고 최종 단계에서는 휴먼케어 전문가가 설계한 규칙에 의해 사용자에게 제공할 서비스를 선택한다. 본 논문에서는 휴먼케어 서비스 로봇을 위해 기계학습 기반의 지식 생성과 규칙 기반의 지식 생성을 함께 활용하여 하이브리드 형태로 계층적 지식을 생성하고, 생성된 지식을 바탕으로 서비스를 선택하는 메커니즘을 제공할 수 있는 서비스를 선택 엔진 내용을 설명한다.

Deep Learning-Based Brain Tumor Classification in MRI images using Ensemble of Deep Features

  • Kang, Jaeyong;Gwak, Jeonghwan
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권7호
    • /
    • pp.37-44
    • /
    • 2021
  • 뇌 MRI 영상의 자동 분류는 뇌종양의 조기 진단을 하는 데 있어 중요한 역할을 한다. 본 연구에서 우리는 심층 특징 앙상블을 사용한 MRI 영상에서의 딥 러닝 기반 뇌종양 분류 모델을 제안한다. 우선 사전 학습된 3개의 합성 곱 신경망을 사용하여 입력 MRI 영상에 대한 심층 특징들을 추출한다. 그 이후 추출된 심층 특징들은 완전 연결 계층들로 구성된 분류 모듈의 입력 값으로 들어간다. 분류 모듈에서는 우선 3개의 서로 다른 심층 특징들 각각에 대해 먼저 완전 연결 계층을 거쳐 특징 차원을 줄인다. 그 이후 3개의 차원이 준 특징들을 결합하여 하나의 특징 벡터를 생성한 뒤 다시 완전 연결 계층의 입력값으로 들어가서 최종적인 분류 결과를 예측한다. 우리가 제안한 모델을 평가하기 위해 웹상에 공개된 뇌 MRI 데이터 셋을 사용하였다. 실험 결과 우리가 제안한 모델이 다른 기계학습 기반 모델보다 더 좋은 성능을 나타냄을 확인하였다.