Acknowledgement
본 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2022R1A2C4001270). 또한, 본 연구는 과학기술정보통신부 및 정보통신기획평가원의 융합보안핵심인재양성사업의 연구 결과로 수행되었음 (IITP-2024-RS-2024-00426853).
References
- MCMAHAN, Brendan, et al. Communication-efficient learning of deep networks from decentralized data. Artificial intelligence and statistics. Fort Lauderdale, Florida, USA. PMLR, 2017. p. 1273-1282.
- Li, Tian, et al. "Federated optimization in heterogeneous networks." Proceedings of Machine learning and systems 2 (2020): 429-450.
- Dong, Jiahua, et al. Federated class-incremental learning. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. New Orleans, Louisiana, USA. 2022. p. 10164-10173.
- Valmadre, Jack. "Hierarchical classification at multiple operating points." Advances in Neural Information Processing Systems. New Orleans, Louisiana, USA. 35 (2022): 18034-18045.
- Krizhevsky, Alex, and Geoffrey Hinton. "Learning multiple layers of features from tiny images." (2009): 7.
- Le, Ya, and Xuan Yang. "Tiny imagenet visual recognition challenge." CS 231N 7.7 (2015): 3.
- Deng, Jia, et al. Imagenet: A large-scale hierarchical image database. 2009 IEEE conference on computer vision and pattern recognition. Miami, Florida, USA Ieee, 2009. p. 248-255.
- Fellbaum, Christiane. "WordNet: An electronic lexical database." MIT Press google schola 2 (1998): 678-686..