• Title/Summary/Keyword: 계측 증폭기

Search Result 46, Processing Time 0.022 seconds

A Design of Full-wave Rectifier for Measurement Instrument (계측기용 새로운 전파정류 회로 설계)

  • Bae Sung-Hoon;Lim Shin-Il
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.4 s.310
    • /
    • pp.53-59
    • /
    • 2006
  • This paper describes the new design technique of full wave rectifier (FWR) for precise measurement instrument and the chip implementation of this FWR circuit with measurement results. Conventional circuits have some problems of complex design and limited output range( $VDD/2{\sim}VLIIV1IT+$). Proposed FWR circuit was simply designed with two 2x1 MUXs, one high speed comparator, and one differential difference amplifier(DDA). One rail-to-rail differential difference amplifier(DDA) performs the DC level shifting to VSS and 2X amplification simultaneously, and enables the full range ($Vss{\sim}VDD$) operation. The proposed FWR circuits shows more than 50% reduction of chip area and power consumption compared to conventional one. Proposed circuit was implemented with 0.35um 1-poly 2-metal CMOS process. Core size is $150um{\times}450um$ and power dissipation is 840uW with 3.3V single supply.

Analog Front-End Circuit Design for Bio-Potential Measurement (생체신호 측정을 위한 아날로그 전단 부 회로 설계)

  • Lim, Shin-Il
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.130-137
    • /
    • 2013
  • This paper presents analog front-end(AFE) circuits for bio-potential measurement. The proposed AFE is composed of IA(instrument amplifier), BPF(band-pass filter), VGA(variable gain amplifier) and SAR(successive approximation register) type ADC. The low gm(LGM) circuits with current division technique and Miller capacitance with high gain amplifier enable IA to implement on-chip AC-coupling without external passive components. Spilt capacitor array with capacitor division technique and asynchronous control make the 12-b ADC with low power consumption and small die area. The total current consumption of proposed AFE is 6.3uA at 1.8V.

Fault Monitoring System for Cables Using a Compact Impedance Analyzer (소형 임피던스 분석기를 이용한 케이블의 결함 감시 시스템)

  • Yoon, Chai-Won;Yong, Hwan-Gu;Kim, Kwangho;Nah, Wansoo;Chae, Jang-Bum;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.11
    • /
    • pp.872-879
    • /
    • 2017
  • This work presents a cable fault monitoring system based on the differential frequency domain reflectometry using a compact impedance analyser which is composed of a direct digital synthesizer, an op amp and a gain/phase detector with a micro controller. The proposed system can replace expensive vector network analysers for frequency domain reflectometry and therefore be deployed in sensor networks for long term multi-point cable monitoring. Effectiveness of the system is experimentally confirmed by diagnosing the status of the power cable.

Implementation of the ECG Monitoring System for Home Health Care Using Wiener Filtering Method (Wiener Filtering 기법을 적용한 홈헬스케어용 심전도 신호 모니터링 시스템 구현)

  • Jeong, Do-Un;Kim, Se-Jin
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.2
    • /
    • pp.104-111
    • /
    • 2008
  • The ECG is biomedical electrical signal occurring on the surface of the body due to the contraction and relaxation of the heart. This signal represents an extremely important measure for health monitoring, as it provides vital information about a patient's cardiac condition and general health. ECG signals are contaminated with high frequency noise such as power line interference, muscle artifact and low frequency nose such as motion artifact. But it is difficult to filter nose from ECG signal, and errors resulting from filtering can distort a ECG signal. The present study implemented a small-size and low-power ECG measurement system that can remove motion artifact for convenient health monitoring during daily life. The implemented ECG monitoring system consists of ECG amplifier, a low power microprocessor, bluetooth module and monitoring program. Amplifier was designed and implemented using low power instrumentation amplifier, and microprocessor was interfaced to the ECG amplifier to collect the data, process, store and feed to a transmitter. And bluetooth module used to wirelessly transmit and receive the vital sign data from the microprocessor to an PC at the receiving site. In order to evaluate the performance of the implemented system, we assessed motion artifact rejection performance in each situation with artificially set condition using adaptive filter.

  • PDF

Biopotential Signal Measurement, Processing and Analysis (생체전기신호의 측정, 처리 및 해석)

  • 우응제
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.12-18
    • /
    • 2004
  • 본 글에서는 인체로부터 생체전기신호를 측정하고 처리 및 해석하는 기술을 소개한다. 일반적인 계측 시스템을 구성하는 필수적인 네 가지 요소는 측정대상, 센서부, 신호처리부, 그리고 출력부이다. 생체전기신호의 측정에서 측정대상은 인체를 포함하는 생명체이다. 경우에 따라서는 생명체로부터 떼어 낸 특정 부위가 측정대상이 될 수도 있으나 본 글에서는 살아 있는 인체를 측정대상으로 설정하기로 한다. 또한 인체로부터 방사되는 에너지를 측정하는 비접촉 방식은 다루지 않고, 측정 부위를 인체의 내부 또는 표면으로 제한한다. 즉, 센서를 측정 부위에 직접 부착하는 접촉형 인체-센서 인터페이스 방법을 사용하는 경우만을 다루기로 한다.(중략)

Driving circuit of magnetoimpedance sensor using Instrumentation amplifier (계측증폭기를 이용한 자기임피던스센서의 구동회로)

  • Song, Jae-Yeon;Kim, Young-Hak;Shin, Kwang-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.581-584
    • /
    • 2003
  • The phase differences and noise signals are in general serious on output of a instrumentation amplifier for signal conditioning of a sensor driven at high frequency due to a time-varying input signal. In this study, we get the better amplification and S/N ratio using the rectified signal for the input of instrumentation amplifier. This driving circuits were designed and constructed by OrCAD and laboratory PCB process. All of the elements used on the circuit including highly speedy OP-Amp. was SMD type and the MI sensor was fabricated by meander-patterned amorphous ribbon. The output sensitivity of this circuit was $105.3mV/V{\cdot}Oe$. That's why this driving circuit is good at detection of fine magnetic field.

  • PDF

Design of BiCMOS Signal Conditioning Circuitry for Piezoresistive Pressure Sensor (압저항형 압력센서를 위한 BiCMOS 신호처리회로의 설계)

  • Lee, Bo-Na;Lee, Moon-Key
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.6
    • /
    • pp.25-34
    • /
    • 1996
  • In this paper, we have designed signal conditioning circuitry for piezoresistive pressure sensor. Signal conditioning circuitry consists of voltage reference circuit for sensor driving voltage and instrument amplifier for sensor signal amplification. Signal conditioning circuitry is simulated using HSPICE in a single poly double metal $1.5\;{\mu}m$ BiCMOS technology. Simulation results of band-gap reference circuit showed that temperature coefficient of $21\;ppm/^{\circ}C$ at the temperature range of $0\;{\sim}\;70^{\circ}C$ and PSRR of 80 dB. Simulation results of BiCMOS amplifier showed that dc voltage gain, offset voltage, CMRR, CMR and PSRR are outperformed to CMOS and Bipolar, but power dissipation and noise voltage were more improved in CMOS than BiCMOS and Bipolar. Designed signal conditioning circuitry showed high input impedance, low offset and good CMRR, therefore, it is possible to apply sensor and instrument signal conditioning circuitry.

  • PDF

A study on bio-signal process for prosthesis arm control (인공의수의 능동 제어를 위한 생체 신호 처리에 관한 연구)

  • Ahn, Young-Myung;Yoo, Jae-Myung
    • 전자공학회논문지 IE
    • /
    • v.43 no.4
    • /
    • pp.28-36
    • /
    • 2006
  • In this paper, an algorithm to classify the 4 motions of arm and a control system to position control the prosthesis are studied. To classify the 4 motions, we use flex sensors which is electrical resistance type sensor that can measure warp of muscle. The flex sensors are attached to the biceps brchii muscle and coracobrachialis muscle and the sensor signals are passed the sensing system. 4 motion of the forearm - flexion and extension, the pronation and supination are classified from this. Also position of forearm is measured from the classified signals. Finally, A two D.O.F prosthesis arm with RC servo-motor is designed to verify the validity of the algorithm. At this time, fuzzy controller is used to reduce the position error by rotary inertia and noise. From the experiment, the position error had occurred within about 5 degree.

LFM Radar Implemented in SDR Architecture (SDR 기반의 LFM 레이다 설계 및 구현)

  • Yoon, Jae-Hyuk;Yoo, Seung-Oh;Lee, Dong-Ju;Ye, Sung-Hyuck
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.4
    • /
    • pp.308-315
    • /
    • 2018
  • In this paper, we present the basic design results for high-resolution radar development at S-band frequency that can precisely measure the miss distance between two targets. The basic system requirement is proposed for the design of a 3.5 GHz linear frequency-modulated (LFM) radar with maximum detection distance and distance resolution of 2 km and 1 m, respectively, and the specifications of each module are determined using the radar equation. Our calculations revealed a signal-to-noise ratio ${\geq}30dB$ with a bandwidth of 150 MHz, transmission power of 43 dBm for the power amplifier, gain of 26 dBi for the antenna, noise figure of 8 dB, and radar cross-section of $1m^2$ at a target distance of 2 km from the radar. Based on the calculation results and the theory and method of LFM radar design, the hardware was designed using software defined radar technology. The results of the subsequent field test are presented that prove that the designed radar system satisfies the requirements.

32-Channel Bioimpedance Measurement System for the Detection of Anomalies with Different Resistivity Values (저항률이 다른 내부 물체의 검출을 위한 32-채널 생체 임피던스 측정 시스템)

  • 조영구;우응제
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.6
    • /
    • pp.503-510
    • /
    • 2001
  • In this paper. we describe a 32-channel bioimpedance measurement system It consists of 32 independent constant current sources of 50 kHz sinusoid. The amplitude of each current source can be adjusted using a 12-bit MDAC. After we applied a pattern of injection currents through 32 current injection electrodes. we measured induced boundary voltages using a variable-gain narrow-band instrumentation amplifier. a Phase-sensitive demodulator. and a 12-bit ADC. The system is interfaced to a PC for the control and data acquisition. We used the system to detect anomalies with different resistivity values in a saline Phantom with 290mm diameter The accuracy of the developed system was estimated as 2.42% and we found that anomalies larger than 8mm in diameter can be detected. We Plan to improve the accuracy by using a digital oscillator improved current sources by feedback control, Phase-sensitive A/D conversion. etc. to detect anomalies smaller than 1mm in diameter.

  • PDF