• Title/Summary/Keyword: 계절 지형 변화

Search Result 157, Processing Time 0.035 seconds

Characteristics of Hydrography and Tidal Current in Hampyung Bay, the Western Coast of Korea (서해 함평만의 해수 물성구조 및 조류 특성)

  • Lee, Kyeong-Sig;Jun, Sue-Kyung
    • Journal of the Korean earth science society
    • /
    • v.30 no.2
    • /
    • pp.247-256
    • /
    • 2009
  • Characteristics of hydrography and tidal currents were investigated in Hampyung Bay through in situ CTD data, tidal currents and elevations. According to the seasonal weather variability, hydrography showed the lower density with high temperature and low salinity in summer and the higher density with low temperature and high salinity in winter. In particular, the thermal structure like a tidal front was formed along the central channel at the neap tide of summer. The critical value of the parameter $SH(=log_{10}(H/U^3)$ where H is depth and U is $M_2$ tidal current amplitude) representing the formation position of tidal front was estimated from 2.4 to 3.5. In addition, the potential energy anomaly $({\phi})$ was ranged between 0.985 and 6.998 Joule/$m^3$, which gradually increased from the mouth into the inner bay. This front may be caused by the unique topography with wide tidal flat and the local difference of tidal current strength. The observed tidal currents at the mouth of bay showed that the ebb time was shorter than the flood time with the increase of depth. This asymmetric ebb-tide dominance is interpreted as a result of tidal distortion by the development of a shallow-water-constituent in Hampyung Bay with a wide macro-tidal flat.

Variation of Seasonal Groundwater Recharge Analyzed Using Landsat-8 OLI Data and a CART Algorithm (CART알고리즘과 Landsat-8 위성영상 분석을 통한 계절별 지하수함양량 변화)

  • Park, Seunghyuk;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.395-432
    • /
    • 2021
  • Groundwater recharge rates vary widely by location and with time. They are difficult to measure directly and are thus often estimated using simulations. This study employed frequency and regression analysis and a classification and regression tree (CART) algorithm in a machine learning method to estimate groundwater recharge. CART algorithms are considered for the distribution of precipitation by subbasin (PCP), geomorphological data, indices of the relationship between vegetation and landuse, and soil type. The considered geomorphological data were digital elevaion model (DEM), surface slope (SLOP), surface aspect (ASPT), and indices were the perpendicular vegetation index (PVI), normalized difference vegetation index (NDVI), normalized difference tillage index (NDTI), normalized difference residue index (NDRI). The spatio-temperal distribution of groundwater recharge in the SWAT-MOD-FLOW program, was classified as group 4, run in R, sampled for random and a model trained its groundwater recharge was predicted by CART condidering modified PVI, NDVI, NDTI, NDRI, PCP, and geomorphological data. To assess inter-rater reliability for group 4 groundwater recharge, the Kappa coefficient and overall accuracy and confusion matrix using K-fold cross-validation were calculated. The model obtained a Kappa coefficient of 0.3-0.6 and an overall accuracy of 0.5-0.7, indicating that the proposed model for estimating groundwater recharge with respect to soil type and vegetation cover is quite reliable.

Effects of Physicochemical and Environmental Factors on Spatial and Temporal Variations in Phytoplankton Pigment and its Community Composition in Jinhae Bay (진해만에서 물리화학적 환경요인이 식물플랑크톤 색소 및 군집조성의 시공간적 변화에 미치는 영향)

  • Na, Sujin;Lee, Jiyoung;Kim, Jeong Bae;Koo, Jun-Ho;Lee, Garam;Hwang, Hyunjin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.340-354
    • /
    • 2021
  • The aim of this study was to investigate the spatial and temporal distribution of phytoplankton biomass and community composition in Jinhae Bay on the southern coast of Korea. Phytoplankton pigment analysis was conducted using ultra performance liquid chromatography (UPLC) were conducted from April to December 2019 at seven stations. Temperature, salinity, and dissolved oxygen (DO) and inorganic nutrients (dissolved nitrogen, dissolved phosphorus, and orthosilicic acid) were measured to investigate the environmental factors associated with the structure of phytoplankton community. Phytoplankton biomass (Chl-a) was the highest in July (mean 15.4±4.3 ㎍/L) and the lowest in December (mean 3.5±0.6 ㎍/L). Fucoxanthin was the most abundant carotenoid and showed a similar variation pattern to Chl-a, peridinin, and Chl-b. Phytoplankton community composition analysis showed that diatoms were a predominant group with an average abundance of 70 % whereas chlorophytes, cryptophytes, and dinoflagellates often appeared with lower averages. Further, the dominance of diatoms was closely correlated with water temperature and N:P ratio, which might be influenced by high temperatures in the summer and nutrient loading from the land. Additionally, freshwater and nutrient input by rainfall was estimated to be the most important environmental factor. Hence, the spatial and temporal variations in the composition of phytoplankton pigments and phytoplankton community were correlated with physicochemical and environmental parameters.

Classification System of Wetland Ecosystem and Its Application (습지생태계 분류체계의 검토 및 적용방안 연구)

  • Chun, Seung Hoon;Lee, Byung Hee;Lee, Sang Don;Lee, Yong Tae
    • Journal of Wetlands Research
    • /
    • v.6 no.3
    • /
    • pp.55-70
    • /
    • 2004
  • The wetland ecosystem is a complex products of various erosion force, accumulation as water flows, hydrogeomorphic units, seasonal changes, the amount of rainfalls, and other essential element. There is no single, correct, ecologically sound definition for wetlands because of the diversity of wetlands and the demarcation between dry and wet environments occurs along a continuum, but wetland plays various ecosystem functions. Despite comprehensive integration through classification and impact factors there is still lacking in systematic management of wetlands. Classification system developed by the USFWS(1979) is hierarchical progresses from systems and subsystems at general levels to classes, subclasses, dominance types, and habitat modifiers. Systems and subsystems are delineated according to major physical attributes such as tidal flushing, ocean-derived salts, and the energy of flowing water or waves. Classes and subclasses describe the type of substrate and habitat or the physiognomy of the vegetation or faunal assemblage. Wetland classes are divided into physical types and biotic types. For the wise management of wetlands in Korea, this study was carried out to examine methodology of USFWS classification system and discuss its application for Korean wetland hydrogeomorphic units already known. Seven wetland types were chosen as study sites in Korea divided into some different types based on USFWS system. Three wetland types belonging to palustrine system showed no difference between Wangdungjae wetland and Mujechi wetland, but Youngnup of Mt. Daeam was different from the former two types at the level of dominant types. This fact means that setting of classification system for management of wetland is needed. Although we may never know much about the wetland resources that have been lost, there are opportunities to conserve the riches that remain. Extensive inventory of all wetland types and documentation of their ecosystem functions are vital. Unique and vulnerable examples in particular need to be identified and protected. Furthermore, a framework with which to demonstrate wetland characteristics and relationships is needed that is sufficiently detailed to achieve the identification of the integrity and salient features of an enormous range of wetland types.

  • PDF

Temporal and spatial variations of SST and Ocean Fronts in the Korean Seas by Empirical Orthogonal Function (경험직교함수 분석에 의한 한반도 주변해역의 해수면온도 및 수온 전선의 시.공간 변화)

  • Yoon Hong-Joo;Byun Hye-Kyung
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.101-104
    • /
    • 2006
  • In the Korean seas, Sea Surface Temperature (SST) and Thermal Fronts (TF) were analyzed temporally and spatially during 8 years from 1993 to 2000 using NOAA/AVHRR MCSST. As the result of EOF method applying SST, the variance of the 1st mode was 97.6%. It is suitable to explain SST conditions in the whole Korean seas. Time coefficients were shown annual variations and spatial distributions were shown the closer to the continent the higher SST variations like as annual amplitudes. The 2nd mode presented higher time coefficients of 1993, 94, and 95 than those of other years. Although the influence is a little, that can explain ElNINO effect to the Korean seas. TF were detected by Sobel Edge Detection Method using gradient of SST. Consequently, TF were divided into 4 fronts; the Subpola. Front (SPF) dividing into the north and south part of the East sea, the Kuroshio Front (KF) in the East China Sea (ESC), the South Sea Coastal Front (SSCF) in the South sea, and the Tidal Front in the West sea. TF located in steep slope of submarine topography. The distributions of 1st mode in SST were bounded in the same place, and these results should be considered to influence of seasonal variations. To discover temporal and spatial variations of TF,SST gradient values were analyzed by EOF. The time coefficients fo the 1st mode (variance : 64.55%) showed distinctive annual variations and SPF, KF, and SSCF was significantly appeared in March. the spatial distributions of the 2nd mode showed contrast distribution, as SPF and SSCF had strong '-' value, where KF had strong '+' value. The time of '+' and '-' value was May and October, respectively. Time coefficients of the 3rd mode had 2 peaks per year and showed definite seasonal variations. SPF represented striking '+' value which time was March and October That was result reflected time of the 1st and 2nd mode. We can suggest specific temporal and spatial variations of TF using EOF.

  • PDF

Temporal and Spatial Variation of Polychaete Community in Kwangyang Bay, Southern Coast of Korea (광양만 다모류군집의 시.공간적 변화)

  • 신현출;고철환
    • 한국해양학회지
    • /
    • v.25 no.4
    • /
    • pp.205-216
    • /
    • 1990
  • This study was carried out to investigate the composition and the distribution of the polychaete community in Kwangyang Bay during 1987-1988, and to deduce causal factors of temporal changes in community by the comparison with the results of 1982 (Choi, 1984). In the present study, the Polychaetes comprised a total of 79 species, and had a mean density of 520 ind. $.$m/SUP -2/. They showed high abundance and species diversity in the main tidal channel and the north channel of Myodo. The most abundant polychaete was Lumbrineris longifolia (28.2%), and followed by Nephtys polybranchia (16.3%) and Stermaspis scutata (8.3%). Comparing the polychaete community in summer of 1987 with that in summer of 1982, Lagis bocki and Chone teres, the most dominant species in 1982, disappeared in 1987, while Lumbrineris longifolia, Nephtys polybranchia, Terebellides horikoshii, and Sternapis scutata experienced above twice increases in densities. the community in the north channel was distinguished from those in other regions by the high abundance of L. bocki in 1982, but was similar to that of the main channel by the disappearance of L. bocki in 1987. The community in the western inner bay was similar to that of the main channel in 1982, but became to be distinguished by the disappearance of l. longifolia and the high densities of S. scutata and Tharyx sp. in 1987. The temporal change in species composition and regional difference might be induced by the combined effects in the changes of hydrologic and sedimentary environments owing to the reclamation on the delta of Seomjing River and the dredging of the north chnnel.L.bocki in the north chnnel vanished after the habitat disturbance by the reclamation and dredging.S.scutata and Tharyxsp.dominated in the western inner bay because of the accumulationfo fine sediments through weakenend durrent flow by the obstruction of a new bank constructed on the delta.

  • PDF

Temporal and spatial variations of SST and Ocean Fronts in the Korean Seas by Empirical Orthogonal Function (경험 직교함수 분석에 의한 한반도 주변해역의 해수면온도 및 수온 전선의 시${\cdot}$공간 변화)

  • Yoon, Hong-Joo;Byun, Hye-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.397-402
    • /
    • 2005
  • In the Korean seas, Sea Surface Temperature (SST) and Thermal Fronts (TF) were analyzed temporally and spatially during 8 years from 1993 to 2000 using NOAA/AVHRR MCSST As the result of EOF method applying SST, the variance of the 1st mode was 97.6%. It is suitable to explain SST conditions in the whole Korean seas. Time coefficients were shown annual variations and spatial distributions were shown the closer to the continent the higher SST variations like as annual amplitudes. The 2nd mode presented higher time coefficients of 1993, 94, and 95 than those of other years. Although the influence is a little, that tan explain EININO effort to the Korean seas. TF were detected by Sobel Edge Detection Method using gradient of SST. Consequently, TF were divided into 4 fronts; the Subpolar Front (SPF) dividing into the north and south part of the East sea , the Kuroshio Front (KF) in the East China Sea (ESC), the South Sea Coastal Front (SSCF) in the South sea, and the Tidal Front in the West sea. TF located in steep slope of submarine topography. The distributions of 1st mode in SST were bounded in the same place, and these results should be considered to influence of seasonal variations. To discover temporal and spatial variations of TF, SST gradient values were analyzed by EOF. The time coefficients fo the 1st mode (variance : 64.55%) showed distinctive annual variations and SPF, KF, and SSCF was significantly appeared in March. the spatial distributions of the 2nd mode showed contrast distribution, as SPF and SSCF had strong'-'value, where KF had strong'+'value. The time of'+'and'-'value was May and October, respectively. Time coefficients of the 3rd mode had 2 peaks per year and showed definite seasonal variations. SPF represented striking'+'value which time was March and October. That was result reflected time of the 1st and 2nd mode. We can suggest specific temporal and spatial variations of TF using EOF.

  • PDF

Prediction of Acer pictum subsp. mono Distribution using Bioclimatic Predictor Based on SSP Scenario Detailed Data (SSP 시나리오 상세화 자료 기반 생태기후지수를 활용한 고로쇠나무 분포 예측)

  • Kim, Whee-Moon;Kim, Chaeyoung;Cho, Jaepil;Hur, Jina;Song, Wonkyong
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.3
    • /
    • pp.163-173
    • /
    • 2022
  • Climate change is a key factor that greatly influences changes in the biological seasons and geographical distribution of species. In the ecological field, the BioClimatic predictor (BioClim), which is most related to the physiological characteristics of organisms, is used for vulnerability assessment. However, BioClim values are not provided other than the future period climate average values for each GCM for the Shared Socio-economic Pathways (SSPs) scenario. In this study, BioClim data suitable for domestic conditions was produced using 1 km resolution SSPs scenario detailed data produced by Rural Development Administration, and based on the data, a species distribution model was applied to mainly grow in southern, Gyeongsangbuk-do, Gangwon-do and humid regions. Appropriate habitat distributions were predicted every 30 years for the base years (1981 - 2010) and future years (2011 - 2100) of the Acer pictum subsp. mono. Acer pictum subsp. mono appearance data were collected from a total of 819 points through the national natural environment survey data. In order to improve the performance of the MaxEnt model, the parameters of the model (LQH-1.5) were optimized, and 7 detailed biolicm indices and 5 topographical indices were applied to the MaxEnt model. Drainage, Annual Precipitation (Bio12), and Slope significantly contributed to the distribution of Acer pictum subsp. mono in Korea. As a result of reflecting the growth characteristics that favor moist and fertile soil, the influence of climatic factors was not significant. Accordingly, in the base year, the suitable habitat for a high level of Acer pictum subsp. mono is 3.41% of the area of Korea, and in the near future (2011 - 2040) and far future (2071 - 2100), SSP1-2.6 accounts for 0.01% and 0.02%, gradually decreasing. However, in SSP5-8.5, it was 0.01% and 0.72%, respectively, showing a tendency to decrease in the near future compared to the base year, but to gradually increase toward the far future. This study confirms the future distribution of vegetation that is more easily adapted to climate change, and has significance as a basic study that can be used for future forest restoration of climate change-adapted species.

The annual variation pattern and regional division of weather eatropy in South Korea (남한의 일기엔트로피의 연변화유형과 지역구분)

  • ;Park, Hyun-Wook
    • Journal of the Korean Geographical Society
    • /
    • v.30 no.3
    • /
    • pp.207-229
    • /
    • 1995
  • The characteristics of weather and climate in South Korea has great influences on the annual variation pattern and the appearance of the prevailing weather. The purpose of this paper is to induce the quantity of the weather entropy and annual variation pattern using the information theory and the principal component analysis. And author tried to classify the region according to the variation of its space scale, The raw materials used for this study are the daily cloudiness and precipitation during the years 1990-1994 at 69 stations in South Korea. It is divided into four classes of fine, clear, cloudy and rainy. The rcsults of this study can be summarized as follows: 1. Thc characteristics of annual variation pattern of weather entropy can be chiefly divided into five categories and the accumulated contributory rate of these is 73.1%. 2. Annual variation pattern of the first principal component reaches smaller in May, April and September than national average, and becomes greater when the winter comes. This weather entropy's quantity(Rs1) is positive in most area to the western sife of Soback Mountains and negative in most seaside area to the eastern side of Soback Mountains. 3. The characteristics of annual variation pattern of the second principal component shows that the entropy is more smaller in summer than national average and the rest of seasons shows larger, especially in January, May and September. This weather entropy's quantity(Rs2) is positive in most Honam Inland area to the western side of Soback Mountains and negative in most Youngnam Inland area to the eastern side of Soback Mountains. 4. Eight type regions (S1-S11) are classified based on the occurrences of minimum weather entropy in South Korea, and annual variation pattern of weather entropy by principal component analysis may be classified into sixteen type regions (Rs1-Rs9). Putting these things together, South Korea can be classifieed into thirty one type regions (Rs1S7-Rs9S10).

  • PDF

Monitoring of Tidal Sand Shoal with a Camera Monitoring System and its Morphologic Change (카메라를 활용한 조석사주 관측시스템 구축 및 지형변화)

  • Lee, Soong-Ji;Lee, Guan-Hong;Kang, Tae-Soon;Kim, Young-Taeg;Kim, Tea-Lim
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.326-333
    • /
    • 2015
  • A tidal sandshoal, called 'Puldeung' in the Daeijackdo Marine Protected Area(DMPA), is facing erosion due to sand mining in the nearby coastal region. To monitor the morphologic change and erosion of Puldeung, a camera monitoring system was established at the top of Song-Ee Mountain in Daeijack Island. The system consists of 2 Cannon digital cameras, Eye-fi memory card/Long-Term Evolution wireless network, and solar power supply. The acquired camera images were analyzed to obtain the area of Puldeung by the following methods: geometric correction of image, identification of shoreline, areal measurement of Puldeung and its error estimation. To compare the Puldeung area with previously measured area of 1.79 km2 at tidal height of 137 cm in 2008 and of 1.59 km2 at tidal height of 148 cm in 2010, we selected images with same tidal heights. The Puldeung area was 1.37 and 1.23 km2 at the tidal height of 137 and 148 cm, respectively. The erosion at DMPA is very severe and thus it is imperative to initiate the morphodynamical study on the seasonal variation and long-term evolution of Puldeung as well as the causes and measures of Puldeung erosion.