Browse > Article
http://dx.doi.org/10.17820/eri.2022.9.3.163

Prediction of Acer pictum subsp. mono Distribution using Bioclimatic Predictor Based on SSP Scenario Detailed Data  

Kim, Whee-Moon (Department of Environmental Horticulture and Landscape Architecture, Dankook University)
Kim, Chaeyoung (Department of Environmental Horticulture and Landscape Architecture, Dankook University)
Cho, Jaepil (Integrated Watershed Management Institute (IWMI))
Hur, Jina (Climate Change Assessment Division, National Institute of Agricultural Sciences)
Song, Wonkyong (School of Environmental Horticulture and Landscape Architecture, Dankook University)
Publication Information
Ecology and Resilient Infrastructure / v.9, no.3, 2022 , pp. 163-173 More about this Journal
Abstract
Climate change is a key factor that greatly influences changes in the biological seasons and geographical distribution of species. In the ecological field, the BioClimatic predictor (BioClim), which is most related to the physiological characteristics of organisms, is used for vulnerability assessment. However, BioClim values are not provided other than the future period climate average values for each GCM for the Shared Socio-economic Pathways (SSPs) scenario. In this study, BioClim data suitable for domestic conditions was produced using 1 km resolution SSPs scenario detailed data produced by Rural Development Administration, and based on the data, a species distribution model was applied to mainly grow in southern, Gyeongsangbuk-do, Gangwon-do and humid regions. Appropriate habitat distributions were predicted every 30 years for the base years (1981 - 2010) and future years (2011 - 2100) of the Acer pictum subsp. mono. Acer pictum subsp. mono appearance data were collected from a total of 819 points through the national natural environment survey data. In order to improve the performance of the MaxEnt model, the parameters of the model (LQH-1.5) were optimized, and 7 detailed biolicm indices and 5 topographical indices were applied to the MaxEnt model. Drainage, Annual Precipitation (Bio12), and Slope significantly contributed to the distribution of Acer pictum subsp. mono in Korea. As a result of reflecting the growth characteristics that favor moist and fertile soil, the influence of climatic factors was not significant. Accordingly, in the base year, the suitable habitat for a high level of Acer pictum subsp. mono is 3.41% of the area of Korea, and in the near future (2011 - 2040) and far future (2071 - 2100), SSP1-2.6 accounts for 0.01% and 0.02%, gradually decreasing. However, in SSP5-8.5, it was 0.01% and 0.72%, respectively, showing a tendency to decrease in the near future compared to the base year, but to gradually increase toward the far future. This study confirms the future distribution of vegetation that is more easily adapted to climate change, and has significance as a basic study that can be used for future forest restoration of climate change-adapted species.
Keywords
AR6; BioClim; Climate change; CMIP6; MaxEnt; SSPs;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Volodin, E., Mortikov, E., Gritsun, A., Lykossov, V., Galin, V., Diansky, N., Gusev, A., Kostrykin, S., Iakovlev, N., Shestakova, A., and Emelina, S. 2019b. INM INM-CM5-0 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.12322.   DOI
2 Wieners, K.H., Giorgetta, M., Jungclaus, J., Reick, C., Esch, M., Bittner, M., ... and Roeckner, E. 2019. MPI-M MPIESM1. 2-LR model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation: Greenbelt, MD, USA.
3 Song, J.H. and Hur, S.D. 2011. Analysis of leaf morphological variation of 11 natural populations of Acer pictum subsp. mono (Maxim.) Ohashi. Korean Journal of Plant Resources 24(5): 540-548. (in Korean)   DOI
4 Stocker, T. (Ed.). 2014. Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge university press.
5 Swart, N.C., Cole, J.N., Kharin, V.V., Lazare, M., Scinocca, J.F., Gillett, N.P., ... and Sigmond, M. 2019. CCCma CanESM5 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation.
6 Swets, J.A. 1988. Measuring the accuracy of diagnostic systems. Science, 240(4857): 1285-1293.   DOI
7 Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., ... and Williams, S. E. 2004. Extinction risk from climate change. Nature 427(6970): 145-148.   DOI
8 Volodin, E., Mortikov, E., Gritsun, A., Lykossov, V., Galin, V., Diansky, N., Gusev, A., Kostrykin, S., Iakovlev, N., Shestakova, A., and Emelina, S. 2019a. INM INM-CM4-8 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.12321.   DOI
9 Tsoar, A., Allouche, O., Steinitz, O., Rotem, D., and Kadmon, R. 2007. A comparative evaluation of presenceonly methods for modelling species distribution. Diversity and distributions 13(4): 397-405.   DOI
10 Voldoire, A. 2019. CNRM-CERFACS CNRM-CM6-1 model output prepared for CMIP6 ScenarioMIP, Earth System Grid Federation.
11 Waltari, E., Schroeder, R., McDonald, K., Anderson, R. P., and Carnaval, A. 2014. Bioclimatic variables derived from remote sensing: Assessment and application for species distribution modelling. Methods in Ecology and Evolution 5(10): 1033-1042.   DOI
12 Warren, D.L. and Seifert, S.N. 2011. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological applications 21(2): 335-342.   DOI
13 Xu, T. and Hutchinson, M. 2011. ANUCLIM version 6.1 user guide. The Australian National University, Fenner School of Environment and Society, Canberra, 90.
14 Yackulic, C.B., Chandler, R., Zipkin, E.F., Royle, J.A., Nichols, J.D., Campbell Grant, E.H., and Veran, S. 2013. Presence-only modelling using MAXENT: when can we trust the inferences?. Methods in Ecology and Evolution 4(3): 236-243.   DOI
15 Yukimoto, S., Koshiro, T., Kawai, H., Oshima, N., Yoshida, K., Urakawa, S., ... and Adachi, Y. 2019. MRI MRIESM2.0 model output prepared for CMIP6 CMIP historical. Earth System Grid Federation 10.
16 Allen, J.L. and Lendemer, J.C. 2016. Climate change impacts on endemic, high-elevation lichens in a biodiversity hotspot. Biodiversity and Conservation 25(3): 555-568.   DOI
17 Ziehn, T., Chamberlain, M., Lenton, A., Law, R., Bodman, R., Dix, M., ... and Druken, K. 2019. CSIRO ACCESSESM1. 5 model output prepared for CMIP6 CMIP. Earth System Grid Federation: Greenbelt, MD, USA.
18 Boucher, O., Denvil, S., Levavasseur, G., Cozic, A., Caubel, A., Foujols, M.A., Meurdesoif, Y., Cadule, P., Devilliers, M., Dupont, E., and Lurton, T. 2019. IPSL IPSL-CM6A-LR model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1532.   DOI
19 Byun, Y.H., Lim, Y.J., Shim, S., Sung, H.M., Sun, M., Kim, J., ... and Moon, H. 2019. NIMS-KMA KACE1. 0-G model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation.
20 Ab Lah, N. Z., Yusop, Z., Hashim, M., Mohd Salim, J., and Numata, S. 2021. Predicting the Habitat Suitability of Melaleuca cajuputi Based on the MaxEnt Species Distribution Model. Forests 12(11): 1449.   DOI
21 Arguez, A. and Vose, R.S. 2011. The definition of the standard WMO climate normal: The key to deriving alternative climate normals. Bulletin of the American Meteorological Society 92(6): 699-704.   DOI
22 Arias, P., Bellouin, N., Coppola, E., Jones, R., Krinner, G., Marotzke, J., ... and Zickfeld, K. 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group14 I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Technical Summary.
23 Bailing, M. and Jian, S. 2018. Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model. BMC Ecology 18(1): 1-12.   DOI
24 Barbet-Massin, M., Jiguet, F., Albert, C.H., and Thuiller, W. 2012. Selecting pseudo-absences for species distribution models: how, where and how many?. Methods in ecology and evolution 3(2): 327-338.   DOI
25 Li, Y., Li, M., Li, C., and Liu, Z. 2020. Optimized maxent model predictions of climate change impacts on the suitable distribution of cunninghamia lanceolata in China. Forests 11(3): 302.   DOI
26 Lee, B., Chung, J., and Kwon, D.S. 2006. Analysis of site suitability of forest stands for extracting sap of Acer pictum var. mono using GIS and fuzzy sets. Journal of Korean Society of Forest Science 95(1): 38-44. (in Korean)
27 Lee, C.B. 1990. Dendrology. Hangmoon Pub. Co., Seoul, Korea, 253.
28 Lenoir, J., Gegout, J. C., Marquet, P.A., de Ruffray, P., and Brisse, H. 2008. A significant upward shift in plant species optimum elevation during the 20th century. Science 320(5884): 1768-1771.   DOI
29 O'Donnell, M.S., and Ignizio, D.A. 2012. Bioclimatic predictors for supporting ecological applications in the conterminous United States. US Geological Survey Data Series 691(10): 4-9.
30 Oh, Y.J., Kim, M.H., Choi, S.K., Kim, M.K., Eo, J., Yeob, S.J., ... and Lee, Y.H. 2021. Prediction of the spatial distribution of suitable habitats for Geranium carolinianum under SSP scenarios. Ecology and Resilient Infrastructure 8(3): 154-163. (in Korean)   DOI
31 Parmesan, C. and Yohe, G. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918): 37-42.   DOI
32 Dix, M., Bi, D., Dobrohotoff, P., Fiedler, R., Harman, I., Law, R., Mackallah, C., Marsland, S., O'Farrell, S., Rashid, H., Srbinovsky, J., Sullivan, A., Trenham, C., Vohralik, P., Watterson, I., Williams, G., Woodhouse, M., Bodman, R., Dias, F. B., ... and Yang, R. 2019. CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.2285.   DOI
33 Eum, H.I., Kim, J.P., and Cho, J. 2018. High-resolution climate data from an improved GIS-based regression technique for South Korea. KSCE Journal of Civil Engineering 22(12): 5215-5228. (in Korean)   DOI
34 EC-Earth Consortium (EC-Earth). 2019. EC-Earth-Consortium EC-Earth3 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.251.   DOI
35 Elith, J., Graham, H.C., Anderson, P.R., Dudik, M., Ferrier, S., Guisan, A., ... and Zimmermann, E.N. 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29(2): 129-151.   DOI
36 Elith, J., Phillips, S.J., Hastie , T., Dudik, M., Che e , Y. E., and Yates, C.J. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and distributions 17(1): 43-57.   DOI
37 Fitzpatrick, M.C., Gove, A.D., Sanders, N.J., and Dunn, R.R. 2008. Climate change, plant migration, and range collapse in a global biodiversity hotspot: the Banksia (Proteaceae) of Western Australia. Global Change Biology 14(6): 1337-1352.   DOI
38 Phillips, S.J., Anderson, R.P., and Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190(3-4): 231-259.   DOI
39 Guisan, A. and Thuiller, W. 2005. Predicting species distribution: offering more than simple habitat models. Ecology letters 8(9): 993-1009.   DOI
40 Pounds, J.A., Bustamante, M.R., Coloma, L.A., Consuegra, J.A., Fogden, M.P., Foster, P.N., ... and Young, B.E. 2006. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439(7073): 161-167.   DOI
41 Robertson, M.P., Villet, M.H., and Palmer, A.R. 2004. A fuzzy classification technique for predicting species' distributions: applications using invasive alien plants and indigenous insects. Diversity and Distributions 10(5-6): 461-474.   DOI
42 IPCC, A. 2013. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change 1535.
43 Seferian, R. 2019. CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6, 1395.   DOI
44 Good, P., Sellar, A., Tang, Y., Rumbold, S., Ellis, R., Kelley, D., Kuhlbrodt, T., and Walton, J. 2019. MOHC UKESM1.0-LL model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.1567.   DOI
45 Guisan, A., Lehmann, A., Ferrier, S., Austin, M., Overton, J.M.C., Aspinall, R., and Hastie, T. 2006. Making better biogeographical predictions of species' distributions. Journal of Applied Ecology 43(3): 386-392.   DOI
46 John, J.G., Blanton, C., McHugh, C., Radhakrishnan, A., Rand, K., Vahlenkamp, H., ... and Zeng, Y. 2018. Noaa-gfdl gfdl-esm4 model output prepared for cmip6 scenariomip. Earth System Grid Federation.
47 Karger, D.N., Conrad, O., Bohner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., ... and Kessler, M. 2017. Climatologies at high resolution for the earth's land surface areas. Scientific data 4(1): 1-20.
48 Kim, G.T., Kim, H.J., and Lee, J.H. 2014. Studies on the Community Structure, Samara and Leaf Shape of Three Natural Acer pictum subsp. mono Forest. Korean Journal of Environment and Ecology 28(1): 55-61. (in Korean)   DOI
49 Kim, J., Jung, H., Jeon, S.W., and Lee, D.K. 2015. Predicting the potential distribution of Korean pine (Pinus koraiensis) using an ensemble of climate scenarios. Journal of the Korean Society of Environmental Restoration Technology 18(2): 79-88. (in Korean)
50 Koo, K.A., Kim, J., Kong, W.S., Jung, H., and Kim, G. 2016. Projecting the potential distribution of Abies koreana in Korea under the climate change based on RCP scenarios. Journal of the Korean Society of Environmental Restoration Technology 19(6): 19-30. (in Korean)
51 Seland, O., Bentsen, M., Olivie, D.J.L., Toniazzo, T., Gjermundsen, A., Graff, L.S., ... and Schulz, M. 2019. NCC NorESM2-LM model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.604.   DOI
52 Shiogama, H., Abe, M., and Tatebe, H. 2019. MIROC MIROC6 model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation.
53 Stockwell, D. 1999. The GARP modelling system: problems and solutions to automated spatial prediction. International Journal of Geographical Information Science 13(2): 143-158.   DOI
54 Kramer-Schadt, S., Niedballa, J., Pilgrim, J.D., Schroder, B., Lindenborn, J., Reinfelder, V., ... and Wilting, A. 2013. The importance of correcting for sampling bias in MaxEnt species distribution models. Diversity and distributions 19(11): 1366-1379.   DOI
55 Kriticos, D.J., Webber, B.L., Leriche, A., Ota, N., Macadam, I., Bathols, J., and Scott, J.K. 2012. CliMond: global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods in Ecology and Evolution 3(1): 53-64.   DOI
56 Tachiiri, K., Abe, M., Hajima, T., Arakawa, O., Suzuki, T., Komuro, Y., ... and Kawamiya, M. 2019. MIROC MIROC-ES2L model output prepared for CMIP6 ScenarioMIP. Earth System Grid Federation. Retrieved from http://cera-www.dkrz.de/WDCC/meta/CMIP6/CMIP6.ScenarioMIP.MIROC.MIROC-ES2L.
57 Um, T.W. and Kim, G.T. 2006. Distribution and growth characteristics of Acer pictum var. mono in relation to topography and soil in Mt. Joongwang, Gangwon Province. Korean Journal of Environment and Ecology 20(2): 200-207. (in Korean)