• Title/Summary/Keyword: 계면접착

Search Result 821, Processing Time 0.024 seconds

Characterization of Interface in Hybrid Composites (혼성복합재료의 계면 특성 분석)

  • Ha, Chang-Sik;Ahn, Ki Youl;Cho, Won-Jei
    • Journal of Adhesion and Interface
    • /
    • v.1 no.1
    • /
    • pp.47-55
    • /
    • 2000
  • In this article, the characterization of the interface of hybrid composites was discussed. Interfacial interaction in organic/inorganic hybrid composites, especially silica-containing hybrids can be characterized by fluorescence spectroscopy, small angle X-ray scattering (SAXS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and $^{29}Si$ NMR spectroscopy measurements.

  • PDF

Comparison on Accuracy of Static and Dynamic Contact Angle Methods for Evaluating Interfacial Properties of Composites (복합재료의 계면특성 평가를 위한 접촉각 방법의 정확도 비교)

  • Kwon, Dong-Jun;Kim, Jong-Hyun;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.23 no.3
    • /
    • pp.87-93
    • /
    • 2022
  • To analyze the interfacial property between the fiber and the matrix, work of adhesion was used generally that was calculated by surface energies. In this paper, it was determined what types of contact angle measurement methods were more accurate between static and dynamic contact angle measurements. 4 types of glass fiber and epoxy resin were used each other to measure the contact angle. The contact angle was measured using two types, static and dynamic contact angle methods, and work of adhesion, Wa was calculated to compare interfacial properties. The interfacial property was evaluated using microdroplet pull-out test. Generally, the interfacial property was proportional to work of adhesion. In the case of static contact angle, however, work of adhesion was not consistent with interfacial property. It is because that dynamic contact angle measurement comparing to static contact angle could delete the error due to microdroplet size to minimize the surface area as well as the meniscus measuring error.

Effect of Aging on Adhesive Strength of Rubber-steel Cord Composite and Tire-endurance (고무-스틸 코드 접착력과 타이어 내구력에 미치는 노화의 영향)

  • Lim, Won-Woo
    • Journal of Adhesion and Interface
    • /
    • v.3 no.2
    • /
    • pp.40-44
    • /
    • 2002
  • We invested effect of the keeping-time of uncured composite and thermal aging, of cured composite on adhesive strength for rubber-brass coated steel cord composite in this study. We also evaluated how the adhesive strength affects to tire endurance. Using PAD adhesion specimen, peel adhesive strength was measured. The uncured composite was kept for several days up to 35 days in factory. Cured composite was also kept for 5 and 10 days at $85^{\circ}C$ in dry oven. Peel adhesive strength was decreased with increasing keeping-time and showed lower value with increasing thermal aging time. The lower peel adhesive strength, the lower tire-endurance. This fact was caused by the humidity and thermal aging which affected in the decrease of adhesive strength of the rubber-steel cord composite and resulted in interface fracture between rubber and steel cord. This phenomenon was confirmed from SEM investigation and tire-endurance. It was just known that corrosion of steel cord's surface and aging of adhesive layer strongly affected to decrease of adhesive strength. This resulted in directly decreasing tire-endurance.

  • PDF

Comparison of Quantitative Interfacial Adhesion Energy Measurement Method between Copper RDL and WPR Dielectric Interface for FOWLP Applications (FOWLP 적용을 위한 Cu 재배선과 WPR 절연층 계면의 정량적 계면접착에너지 측정방법 비교 평가)

  • Kim, Gahui;Lee, Jina;Park, Se-hoon;Kang, Sumin;Kim, Taek-Soo;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.2
    • /
    • pp.41-48
    • /
    • 2018
  • The quantitative interfacial adhesion energy measurement method of copper redistribution layer and WPR dielectric interface were investigated using $90^{\circ}$ peel test, 4-point bending test, double cantilever beam (DCB) measurement for FOWLP Applications. Measured interfacial adhesion energy values of all three methods were higher than $5J/m^2$, which is considered as a minimum criterion for reliable Cu/low-k integration with CMP processes without delamination. Measured energy values increase with increasing phase angle, that is, in order of DCB, 4-point bending test, and $90^{\circ}$ peel test due to increasing roughness-related shielding and plastic energy dissipation effects, which match well interfacial fracture mechanics theory. Considering adhesion specimen preparation process, phase angle, measurement accuracy and bonding energy levels, both DCB and 4-point bending test methods are recommended for quantitative adhesion energy measurement of RDL interface depending on the real application situations.

Effects of Wet Chemical Treatment and Thermal Cycle Conditions on the Interfacial Adhesion Energy of Cu/SiNx thin Film Interfaces (습식표면처리 및 열 사이클에 따른 Cu/SiNx 계면접착에너지 평가 및 분석)

  • Jeong, Minsu;Kim, Jeong-Kyu;Kang, Hee-Oh;Hwang, Wook-Jung;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.1
    • /
    • pp.45-50
    • /
    • 2014
  • Effects of wet chemical treatment and thermal cycle conditions on the quantitative interfacial adhesion energy of $Cu/SiN_x$ thin film interfaces were evaluated by 4-point bending test method. The test samples were cleaned by chemical treatment after Cu chemical-mechanical polishing (CMP). The thermal cycle test between Cu and $SiN_x$ capping layer was experimented at the temperature, -45 to $175^{\circ}C$ for 250 cycles. The measured interfacial adhesion energy increased from 10.57 to $14.87J/m^2$ after surface chemical treatment. After 250 thermal cycles, the interfacial adhesion energy decreased to $5.64J/m^2$ and $7.34J/m^2$ for without chemical treatment and with chemical treatment, respectively. The delaminated interfaces were confirmed as $Cu/SiN_x$ interface by using the scanning electron microscope and energy dispersive spectroscopy. From X-ray photoelectron spectroscopy analysis results, the relative Cu oxide amounts between $SiN_x$ and Cu decreased by chemical treatment and increased after thermal cycle. The thermal stress due to the mismatch of thermal expansion coefficient during thermal cycle seemed to weaken the $Cu/SiN_x$ interface adhesion, which led to increased CuO amounts at Cu film surface.

Effects of Ar/N2 Two-step Plasma Treatment on the Quantitative Interfacial Adhesion Energy of Low-Temperature Cu-Cu Bonding Interface (Ar/N2 2단계 플라즈마 처리에 따른 저온 Cu-Cu 직접 접합부의 정량적 계면접착에너지 평가 및 분석)

  • Choi, Seonghun;Kim, Gahui;Seo, Hankyeol;Kim, Sarah Eunkyung;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.29-37
    • /
    • 2021
  • The effect of Ar/N2 two-step plasma treatment on the quantitative interfacial adhesion energy of low temperature Cu-Cu bonding interface were systematically investigated. X-ray photoelectron spectroscopy analysis showed that Ar/N2 2-step plasma treatment has less copper oxide due to the formation of an effective Cu4N passivation layer. Quantitative measurements of interfacial adhesion energy of Cu-Cu bonding interface with Ar/N2 2-step plasma treatment were performed using a double cantilever beam (DCB) and 4-point bending (4-PB) test, where the measured values were 1.63±0.24 J/m2 and 2.33±0.67 J/m2, respectively. This can be explained by the increased interfacial adhesion energy according phase angle due to the effect of the higher interface roughness of 4-PB test than that of DCB test.

Effects of Dielectric Curing Temperature and T/H Treatment on the Interfacial Adhesion Energies of Ti/PBO for Cu RDL Applications of FOWLP (FOWLP Cu 재배선 적용을 위한 절연층 경화 온도 및 고온/고습 처리가 Ti/PBO 계면접착에너지에 미치는 영향)

  • Kirak Son;Gahui Kim;Young-Bae Park
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.52-59
    • /
    • 2023
  • The effects of dielectric curing temperature and temperature/humidity treatment conditions on the interfacial adhesion energies between Ti diffusion barrier/polybenzoxazole (PBO) dielectric layers were systematically investigated for Cu redistribution layer applications of fan-out wafer level package. The initial interfacial adhesion energies were 16.63, 25.95, 16.58 J/m2 for PBO curing temperatures at 175, 200, and 225 ℃, respectively. X-ray photoelectron spectroscopy analysis showed that there exists a good correlation between the interfacial adhesion energy and the C-O peak area fractions at PBO delaminated surfaces. And the interfacial adhesion energies of samples cured at 200 ℃ decreased to 3.99 J/m2 after 500 h at 85 ℃/85 % relative humidity, possibly due to the weak boundary layer formation inside PBO near Ti/PBO interface.

Adhesion between Rubber Compound and Copper-Film-Coated Steel Plate Prepared by Vacuum Sputtering and Substitution Plating Methods (진공증착법과 치환도금법으로 제조한 구리박막 피복철판과 배합고무의 접착)

  • Moon, Kyung-Ho;Han, Min-Hyun;Seo, Gon
    • Journal of Adhesion and Interface
    • /
    • v.4 no.3
    • /
    • pp.1-8
    • /
    • 2003
  • Adhesion between rubber compound and copper-film-coated steel plate (abbreviated hereafter as copper film plate) with different thicknesses of copper film was investigated. Two different methods were employed for the preparation of the copper film plates: a substitution plating of preelectroplated zinc with copper ion and a vacuum sputtering of copper on steel plate. Adhesion strength of the copper film plates with rubber compounds was largely dependent upon the thickness of copper film, regardless of their preparation methods. The copper film plates with thinner thickness than 75 nm showed high adhesion comparable to brass, while those with thicker copper film showed poor adhesion due to excessive growth of copper sulfide at adhesion interface.

  • PDF

Measurement of Adhesion (접착력의 측정)

  • Kim, Sung-Ryong;Lee, Ho-Young
    • Journal of Adhesion and Interface
    • /
    • v.4 no.3
    • /
    • pp.21-32
    • /
    • 2003
  • Various methods for adhesion measurement, which are related to previously published paper [J. of Soc. of Adhe. and Inter, 3,4 (2002)], are reviewed. At first, the prerequisite for the ideal adhesion strength measurement is considered, and three categories of methods for adhesion measurement, such as mechanical, non-mechanical methods and miscellaneous methods, are introduced.

  • PDF