DOI QR코드

DOI QR Code

Effects of Dielectric Curing Temperature and T/H Treatment on the Interfacial Adhesion Energies of Ti/PBO for Cu RDL Applications of FOWLP

FOWLP Cu 재배선 적용을 위한 절연층 경화 온도 및 고온/고습 처리가 Ti/PBO 계면접착에너지에 미치는 영향

  • Kirak Son (STATS ChipPAC Korea Ltd) ;
  • Gahui Kim (School of Materials Science and Engineering, Andong National University) ;
  • Young-Bae Park (School of Materials Science and Engineering, Andong National University)
  • 손기락 ((유) 스태츠칩팩코리아) ;
  • 김가희 (안동대학교 신소재공학부 청정에너지소재기술연구센터) ;
  • 박영배 (안동대학교 신소재공학부 청정에너지소재기술연구센터)
  • Received : 2023.05.09
  • Accepted : 2023.06.01
  • Published : 2023.06.30

Abstract

The effects of dielectric curing temperature and temperature/humidity treatment conditions on the interfacial adhesion energies between Ti diffusion barrier/polybenzoxazole (PBO) dielectric layers were systematically investigated for Cu redistribution layer applications of fan-out wafer level package. The initial interfacial adhesion energies were 16.63, 25.95, 16.58 J/m2 for PBO curing temperatures at 175, 200, and 225 ℃, respectively. X-ray photoelectron spectroscopy analysis showed that there exists a good correlation between the interfacial adhesion energy and the C-O peak area fractions at PBO delaminated surfaces. And the interfacial adhesion energies of samples cured at 200 ℃ decreased to 3.99 J/m2 after 500 h at 85 ℃/85 % relative humidity, possibly due to the weak boundary layer formation inside PBO near Ti/PBO interface.

팬 아웃 웨이퍼 레벨 패키지의 Cu 재배선층 적용을 위해 Ti 확산방지층과 폴리벤즈옥사졸(polybenzoxazole, PBO) 절연층 사이의 계면 신뢰성을 평가하였다. PBO 경화 온도 및 고온/고습 시간에 따라 4점 굽힘 시험으로 정량적인 계면접착에너지를 평가하였고, 박리계면을 분석하였다. 175, 200, 및 225℃의 세 가지 PBO 경화 온도에 따른 계면접착에너지는 각각 16.63, 25.95, 16.58 J/m2 로 200℃의 경화 온도에서 가장 높은 값을 보였다. 박리표면에 대한 X-선 광전자 분광분석 결과, 200℃에서 PBO 표면의 C-O 결합의 분율이 가장 높으므로, M-O-C 결합이 Ti/PBO 계면접착 기구와 연관성이 높은 것으로 판단된다. 200℃에서 경화된 시편을 85℃/85% 상대 습도에서 500시간 동안 고온/고습 처리 하는 동안 계면접착에너지는 3 .99 J/m2까지 크게 감소하였다. 이는 고온/고습 처리동안 Ti/PBO 계면으로의 지속적인 수분 침투로 인해 계면 근처 PBO의 화학결합이 약해져서 weak boundary layer를 형성하기 때문으로 판단된다.

Keywords

Acknowledgement

이 논문은 2022년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구(20016465)와 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구(No.2022R1A2C1092453)결과로 수행되었으며, 샘플 제작에 도움을 주신 한국재료연구원 김도근 박사님께 감사드립니다.

References

  1. S. E. Kim, "Heterogeneous Device Packaging Technology for the Internet of Things Applications(in Kor.)", J. Microelectron. Packag. Soc., 23(3), 1 (2016).
  2. G. Kim, J. Lee, S. H. Park, S. Kang, T. S. Kim, and Y. B. Park, "Comparison of Quantitative Interfacial Adhesion Energy Measurement Method between Copper RDL and WPR Dielectric Interface for FOWLP Applications(in Kor.)", J. Microelectron. Packag. Soc., 25(2), 41 (2018).
  3. E. J. Vardaman, "FO-WLP Market and Technology Trends", Proc. 2017 International Conference on Electronics Packaging (ICEP), Tendo, 318, IEEE (2017).
  4. T. Hwang, D. Oh, E. Song, K. Kim, J. Kim, and S. Lee, "Study of Advanced Fan-Out Packages for Mobile Applications", Proc. 68th 2018 Electronic Components and Technology Conference (ECTC), San Diego, 343, IEEE (2018).
  5. V. S. Rao, C. T. Chong, D. Ho, and D. M. Zhi, "Process and Reliability of Large Fan-Out Wafer Level Package based Package-on-Package", Proc. 67th Electronic Components and Technology Conference (ECTC), Orlando, 615, IEEE (2017).
  6. Z. Chen, F. Che, M. Z. Ding, D. S. W. Ho, T. C. Chai, and V. Srinivasa, "Drop Impact Reliability Test and Failure Analysis for Large Size High Density FOWLP Package on Package", Proc. 67th Electronic Components and Technology Conference (ECTC), Orlando, 1196, IEEE (2017).
  7. T. Fujiwara, Y. Shoji, Y. Masuda, K. Hashimoto, Y. Koyama, K. Isobe, H. Araki, R. Okuda, and M. Tomikawa, "Higher Reliability for Low-temperature Curable Positive-Tone Photodefinable Dielectric Materials", Proc. 19th Electronics Packaging Technology Conference (EPTC), Singapore, IEEE (2017).
  8. T. Enomoto, S. Abe, D. Matsukawa, T. Nakamura, N. Yamazaki, N. Saito, M. Ohe, and T. Motobe, "Recent Progress in Low Temperature Curable Photosensitive Dielectric", Proc. 2017 International Conference on Electronics Packaging (ICEP), Tendo, 498, IEEE (2017).
  9. M. Topper, T. Fischer, V. Bader, K. D. Lang, N. Matsuie, T. Motobe, T. Minegishi, and M. Knaus, "Ultra low temperature PBO polymer for wafer level packaging application", Proc. 2011 International Conference on Electronics Packaging(ICEP), Kyoto, 452, IEEE (2011).
  10. Y. Shoji, Y. Masuda, K. Hashimoto, K. Isobe, Y. Koyama, and R. Okuda, "Development of novel low-temperature curable positive-tone photosensitive dielectric materials with high elongation", Proc. 66th Electronic Components and Technology Conference(ECTC), Las Vegas, 1707, IEEE (2016).
  11. T. Sasaki, "Low temperature curable polymide for advanced package", J. Photopolym. Sci. Technol., 29(3), 379 (2016).
  12. R. Rubner, "Innovation via photosensitive polyimide and poly(benzoxazole) percursors - a review by inventor", J. Photopolym. Sci. Technol., 17(5), 685 (2004).
  13. N. Anzai, M. Fujita, and A. Fujii, "Drop test and TCT reliability of buffer coating material for WLCSP", Proc. 64th Electronic Components and Technology Conference(ECTC), FL, 829, IEEE (2014).
  14. M. Yoshida, T. Hirata, M. Fujita, N. Anzai, and N. Tamura, "Highmudulus negative photosensitive polyimide for i-line", J. Photopolym. Sci. technol., 27(2), 207 (2014).
  15. M. Amagai, M. Ohsumi, E. Kawasaki, R. Baumann, and H. Kitagawa, "The Effect of Polyimide Surface Morphology and Chemistry on Package Cracking Induced by Interfacial Delamination," Proc. 1994 IEEE International Reliability Physics Symposium(IRPS), USA, 101, IEEE (1994).
  16. J. H. Cho, D. I. Kong, C. E. Park, and M. Y. Jin, "Effect of curing temperature on the adhesion strength of polyamideimide/copper joints", J. Adhesion Sci. Technol., 12(5), 507 (1998).
  17. H. Araki, Y. Shoji, Y. Masuda, K. Hashimoto, K Matsumura, Y. Koyama, and M. Tomikawa, "Fabrication of Redistribution Structure using Highly Reliable Photosensitive Polyimide for Fan Out Panel Level Packages", Proc. 15th International Wafer-Level Packaging Conference(IWLPC), San Jose, IEEE (2018).
  18. Y. Koyama, Y. Shoji, K. Hashimoto, Y. Masuda, H. Araki, and M. Tomikawa, "Development of Novel Low-temperature Curable Positive-Tone Photosensitive Dielectric Materials with High Reliability", Proc. 69th Electronic Components and Technology Conference (ECTC), Las Vegas, 346, IEEE (2019).
  19. Y. Chung, S. Lee, C. Mahata, J. Seo, S. -M. Lim, M. Jeong, H, Jung, Y, -C, Joo, Y, B, Park, H. Kim and T. Lee, "Coupled self-assembled monolayer for enhancement of Cu diffusion barrier and adhesion properties", RSC Adv., 4, 60123 (2014).
  20. M. Jeong, B. -H. Bae, H. Lee H. -O. Kang, W. -J. Hwang, J. -M. Yang, and Y. B. Park, "Effects of post-annealing and temperature/humidity treatments on the interfacial adhesion energy of the Cu/SiNx interface for Cu interconnects", Jpn. J. Appl. Phys., 55, 06JD01 (2016).
  21. K. Son, Y. -H. Kim, S. -H. Kim, and Y. B. Park, "Interfacial adhesion energies of Ru-Mn direct plateable diffusion barriers prepared by atomic layer deposition for advanced Cu interconnects", J. Mater. Sci.: Mater. Electron., 32, 20559 (2021).
  22. R. Shaviv, S. Toham, and P. Woytowitz, "Optimizing the Precision of the Four-point Bend Test for the Measurement of Thin-film Adhesion", Microelectronic Eng., 82(2), 99 (2005).
  23. R. H. Dauskardt, M. Lane, Q. Ma, and N. Krishna, "Adhesion and debonding of multi-layer thin film structures", Engng. Fract. Mech., 61(1), 141 (1998).
  24. P. G. Charalambides, J. Lund, A. G. Evans, and R. M. McMeeking, "A Test Specimen for Determining the Fracture Resistance of Bimaterial Interfaces", J. Appl. Mech., 56(1), 77 (1989).
  25. A. L. Ruoff, E. J. Kramer, and C. Y. Li, "Improvement of adhesion of copper on polyimide by reactive ion-beam etching", IBM J. Res. Develop., 32(5), 626 (1988).
  26. R. Flitsch and D. Shih, "A study of modified polyimide surfaces as related to adhesion", J. Vac. Sci. Technol. A, 8(3), 2376 (1990).
  27. H. Wang, S. Liu, T. S. Chung, H. Chen, Y. C. Jean, and K. P. Pramod, "The evolution of poly(hydroxyamide amic acid) to poly(benzoxazole) via stepwise thermal cyclization: Structural changes and gas transport properties", Polymer, 52(22), 5127 (2011).
  28. S. L. C. Hsu and W. C. Chen, "A novel positive photosensitive polybenzoxazole precursor for microelectronic applications", Polymer, 43(25), 6743 (2002).
  29. J. E. Graya, P. R. Norton, K. Griffiths, "Mechanism of adhesion of electroless-deposited silver on poly(ether urethane)", Thin Solid Films, 484, 196 (2005).
  30. K. Son, G. Kim, D. Kim, and Y. B. Park, "Effect of Surface Treatments on the Interfacial Adhesion of Cu RDL for FOWLP", Proc. 18th International Symposium on Microelectronics and Packaging (ISMP), Busan (2019).
  31. S. C. Park, and Y. B. Park, "Effect of Temperature/Humidity Treatment Conditions on Interfacial Adhesion Energy between Inkjet-Printed Ag and Polyimide", Jpn. J. Appl. Phys., 48(8), 08HL02 (2009).
  32. K. J. Min, M. H. Jeong, K. H. Lee, Y. S. Jeong, and Y. B. Park, "Effect of Temperature/Humidity Treatment Conditions on Interfacial Adhesion of Electroless-plated Ni on Polyimide(in Kor.)", J. Kor. Inst. Met. Mater., 47(10), 675 (2009).
  33. D.-C. Hu, H.-C. Chen, "Humidity effect on polyimide film adhesion", J. Mater. Sci., 27(19), 5262 (1992).