• Title/Summary/Keyword: 계면전단강도

Search Result 240, Processing Time 0.029 seconds

Study on the Durability of Composite Tilting Pad Journal Bearing for Turbo Compressor System under Oil-cut Situation (터보 컴프레셔용 복합재료 틸팅 패드 저널 베어링의 오일 공급 중단 상황에서의 내구성 연구)

  • Choe, Kang-Yeong;Jung, Min-Hye;You, Jun-Il;Song, Seung-A;Kim, Seong-Su
    • Composites Research
    • /
    • v.29 no.3
    • /
    • pp.111-116
    • /
    • 2016
  • The tilting pad journal bearing for the turbo compressor application has a role to support high speed and heavy loading rotor. White metal has been widely used for the bearing material but the conventional bearing is immediately suspended and induces serious serious damage to the rotor under the unexpected oil cut situation or the insufficient oil film formation. The carbon fiber reinforced composite having high specific stiffness, specific strength and excellent tribological characteristics can solve these seizure problems. In this work, the study on the durability of high thermal resistance carbon fiber/epoxy composite tilting pad journal bearing under oil cut situation was conducted. The material properties of the composite materials including tensile, compressive and interlaminar properties were measured at room and high temperature of oil cut situation. To investigate the possibility of failure of composite tilting pad journal bearing under oil cut situation, the stress distribution of the composite bearing was analyzed via finite element analysis and the Tsai-Wu Failure index was calculated. To verify the failure analysis results, the oil cut tests for the composite tilting pad journal bearing were conducted using industrial test bench.

Characterization of Water Absorption by CFRP Using Air-Coupled Ultrasonic Testing (공기결합 초음파탐상에 의한 CFRP 복합재의 흡습 특성 평가)

  • Lee, Joo-Min;Lee, Joo-Sung;Kim, Yong-Kwon;Park, Ik-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.155-164
    • /
    • 2014
  • Carbon-fiber-reinforced plastic (CFRP) composites are increasingly being used in a variety of industry applications, such as aircraft, automobiles, and ships because of their high specific stiffness and high specific strength. Aircraft are exposed to high temperatures and high humidity for a long duration during flights. CFRP materials of the aircraft can absorb water, which could decrease the adhesion strength of these materials and cause their volumes to change with variation in internal stress. Therefore, it is necessary to estimate the characteristics of CFRP composites under actual conditions from the viewpoint of aircraft safety. In this study air-coupled ultrasonic testing (ACUT) was applied to the evaluation of water absorption properties of CFRP composites. CFRP specimens were fabricated and immersed in distilled water at $75^{\circ}C$ for 30, 60, and 120 days, after which their ultrasonic images were obtained by ACUT. The water absorption properties were determined by quantitatively analyzing the changes in ultrasonic signals. Further, shear strength was applied to the specimens to verify the changes in their mechanical properties for water absorption.

Direct Tensile Properties of Fiber-Reinforced Cement Based Composites according to the Length and Volume Fraction of Amorphous Metallic Fiber (비정질 강섬유의 길이 및 혼입률에 따른 섬유보강 시멘트복합체의 직접인장특성)

  • Kim, Hong-Seop;Kim, Gyu-Yong;Lee, Sang-Kyu;Choe, Gyeong-Cheol;Nam, Jeong-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.3
    • /
    • pp.201-207
    • /
    • 2019
  • In this study, the direct tensile properties of amorphous metallic fiber-reinforced cement based composites according to the strain was evaluated. A thin plate-shape amorphous metallic fiber with 15mm and 30mm in length was used. And fiber-reinforced cement based composites were prepared with contents of 1.0, 1.5, 2.0%. The direct tensile test was conducted under the conditions of $10^{-6}/s(static)$ and $10^1/s(dynamic)$ strain rate. As a results, amorphous metallic fiber with a length of 15mm was observed in pull-out behavior from the cement matrix because of the short fiber length and large portion of mixed fiber. On the other hand, amorphous metallic fiber with a length of 30mm were not pulled out from matrix because the bonding force between the fiber and matrix was large due to rough surface and large specific surface area. However, fracture occurred because thin plate shape fibers were vulnerable to shear force. Tensile strength, strain capacity and toughness were improved due to the increase in the fiber length. The dynamic increase factor of L15 was larger that of L30 because the bonding performance of the fiber-matrix interface is significantly affected by the strain rate.

Effect of titanium powder on the bond strength of metal heat treatment (티타늄 파우더가 금속의 열처리 시 결합강도에 미치는 영향)

  • Kim, Sa-Hak;Kim, Wook-Tae
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.2
    • /
    • pp.71-79
    • /
    • 2017
  • Purpose: Ni-Cr alloy does not contain Beryllium, causing the metal compound to form oxides in the furnace but by using Titanium as a chemical catalyst the forming of the oxides can be controlled, and by controlling the impurities formed on the metal surface, the possibility of the Ni-Cr alloy bond strength being increased can be analysed. Materials and Methods: Titanium was used as a chemical catalyst in the porcelain for the oxidation of beryllium-free metal (Ni-Cr) alloy. The T1 group, which does not use Titanium power as a chemical catalyst is a reference model for comparison. The T2 group and T3 group used 10 g and 20 g of Titanium power, respectively. They are fabricated to observe the shear bond strength and surface properties. There was no significance when One-way ANOVA analysis/Tukey Honestly Significant Difference Test was conducted for statistical analysis among groups (P > 0.05). Results: Results of measuring the three-point flexural bond strength of the Ni-Cr alloy and thickness of the oxide film. Experiment T3 using 20 g Titanium chemical catalyst: $39.22{\pm}3.41MPa$ and $6.66{\mu}m$, having the highest bond strength and thinness of oxide film. Experiment T2 using 10 g Titanium chemical catalyst: $34.65{\pm}1.39MPa$ and $13.22{\mu}m$. Experiment T1 using no Titanium chemical catalyst: $32.37{\pm}1.91MPa$ and $22.22{\mu}m$. Conclusion: The T2 and T3 experiments using Titanium chemical catalyst showed higher bond strength for the Ni-Cr alloy and lower thickness of oxide film than experiment T1, and the titanium catalyst being able to increase bond strength was observed.

Shear Bond Strength between Veneered Ceramics and Core Materials for Esthetic Restorations (심미보철용 코어재료와 베니어 세라믹 계면의 전단결합강도 비교)

  • Kim, Ki-Won;Park, Hang-Min;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.31 no.2
    • /
    • pp.45-52
    • /
    • 2009
  • Esthetic restorations have been widely used in dental practice, although many studies have focused on the development and improvement of all ceramic restorations. The success of esthetic restorations depends primarily on an optimal bond strength between various veneered ceramics and core materials for esthetic restorations. The purpose of this study was to compare the shear bond strength between various veneered ceramics and core materials for esthetic restorations. 30 metal cores and 20 zirconia cores were fabricated and divided into five groups according to veneered ceramic materials such as Creation porcelain powder, Cercon Ceram Kiss, and IPS e.max ZirPress. Thirty spacimens were prepared using Creation porcelain powder, veneered 3mm height and 3mm in diameter, over the metal cores (n=10). Twenty specimens were prepared using Cercon Ceram Kiss and Zirpress, veneered 3mm height and 3mm in diameter, over the zirconia cores (n=10). The shear bond strength test was performed in a universal testing machine with a crosshead speed of 1mm/min. Ultimate shear bond strength data were analyzed with One-way ANOVA and the Scheffe's test (p=.05). Within the limits of this study, the following conclusions were drawn: The mean shear bond strengths (MPa) were: 18.44 for Uni metal VH/Creation (NCUC); 18.72 for Heraenium/Creation (NCHC); 16.23 for Wirobond C/Creation (NCWC); 13.88 for Zirconia core/$110{\mu}m$ $Al_2O_3$ sandblasting/Cercon Ceram Kiss (ZS110P); 14.61 for Zirconia core/No surface treatment/IPS e.max ZirPress (ZNTH). The mean shear bond strength for NCUC (Uni metal VH/Creation), NCHC (Heraenium/Creation) and NCWC (Wirobond C/Creation) were significantly superior to ZS110P (Zirconia core/$110{\mu}m$ $Al_2O_3$ sandblasting/Cercon Ceram Kiss) and ZNTH(Zirconia core/No surface treatment/IPS e.max ZirPress) (p<0.05).

  • PDF

Application of Au-Sn Eutectic Bonding in Hermetic Rf MEMS Wafer Level Packaging (Au-Sn 공정 접합을 이용한 RF MEMS 소자의 Hermetic 웨이퍼 레벨 패키징)

  • Wang Qian;Kim Woonbae;Choa Sung-Hoon;Jung Kyudong;Hwang Junsik;Lee Moonchul;Moon Changyoul;Song Insang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.3 s.36
    • /
    • pp.197-205
    • /
    • 2005
  • Development of the packaging is one of the critical issues for commercialization of the RF-MEMS devices. RF MEMS package should be designed to have small size, hermetic protection, good RF performance and high reliability. In addition, packaging should be conducted at sufficiently low temperature. In this paper, a low temperature hermetic wafer level packaging scheme for the RF-MEMS devices is presented. For hermetic sealing, Au-Sn eutectic bonding technology at the temperature below $300{\times}C$ is used. Au-Sn multilayer metallization with a square loop of $70{\mu}m$ in width is performed. The electrical feed-through is achieved by the vertical through-hole via filled with electroplated Cu. The size of the MEMS Package is $1mm\times1mm\times700{\mu}m$. By applying $O_2$ plasma ashing and fabrication process optimization, we can achieve the void-free structure within the bonding interface as well as via hole. The shear strength and hermeticity of the package satisfy the requirements of MIL-STD-883F. Any organic gases or contamination are not observed inside the package. The total insertion loss for the packaging is 0.075 dB at 2 GHz. Furthermore, the robustness of the package is demonstrated by observing no performance degradation and physical damage of the package after several reliability tests.

  • PDF

The Influence of Bonding Strength and Interface Characteristics to Bonding Agent and Veneer Ceramics on Metal-Ceramic Prosthetics (결합재와 베니어세라믹이 금속-세라믹 보철물의 전단결합강도와 계면특성에 미치는 영향)

  • Kim, Min-Jung;Choi, Sung-Min;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.33 no.4
    • /
    • pp.349-357
    • /
    • 2011
  • Purpose: In this study, for the reasons of observing the changes when using bonding agent with Ni-Cr alloy and Co-Cr alloy and using VM13 and Vintage MP ceramic which have the disparity in coefficient of thermal expansion, it is carried out to evaluate the characteristics of the bonding agent through the analysis of the interface between metal and ceramic and the analysis of bond strength by variable. Methods: The surface treatment was performed on the two kinds of alloy(Ni-Cr alloy and Co-Cr alloy) specimens, which were sandblasted and were treated with bonder application. The metal-ceramic interfaces were analyzed with EPMA in order to ionic diffusion, and the shear test was performed. Results: As a result of observation of metal-ceramic interfacial properties, it was observed that Cr atoms were spread from the alloy body to the ceramic floor in the specimen of Group B. It was also seen that Cr, W atoms were spread from the alloy body to the ceramic floor in the specimen of Group S. In consequence of observing Shear bond strength, it was calculated that the specimen of BSV was 27.75(${\pm}11.21$)MPa, BSM was 27.02(${\pm}5.23$)MPa, BCV was 30.20(${\pm}5.99$)MPa, BCM was 27.94(${\pm}10.76$)MPa, SSV was 20.83(${\pm}2.58$)MPa, SSM was 23.98(${\pm}3.94$)MPa, SCV was 32.32(${\pm}4.68$)MPa, and SCM was 34.54(${\pm}10.63$)MPa. Conclusion: In the metal-ceramic interface of Bellabond plus sample group, diffusion of Cr atoms was incurred and diffusion of C Cr atoms and W atoms in the sample group of $Starloy{(R)}\;C$ was observed. Using bonding agent showed the higher bond strength than using the sand blasting treatment. In the Bellabond plus alloys, the specimen group with the use of binding materials showed higher shear bond strength, but didn't show statistically significant differences (p>0.05). In the $Starloy{(R)}\;C$ alloys, the specimen group with the use of binding materials showed higher shear bond strength and statistically significant differences(p<0.05). In terms of VM13 ceramic, it was in the Bellabond plus alloys that the high shear bond strength was showed, but there's no statistically significant differences(p>0.05). In terms of Vintage MP ceramic, it was in the $Starloy{(R)}\;C$ alloys that the high shear bond strength was showed and statistically significant differences(p<0.05). Metal-ceramic to fracture of the shear strength measurements and an analysis of all aspects of military usage fracture of the composite, respectively.

Analysis of the Characteristics of the Seismic source and the Wave Propagation Parameters in the region of the Southeastern Korean Peninsula (한반도 남동부 지진의 지각매질 특성 및 지진원 특성 변수 연구)

  • Kim, Jun-Kyoung;Kang, Ik-Bum
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.1 s.4
    • /
    • pp.135-141
    • /
    • 2002
  • Both non-linear damping values of the deep and shallow crustal materials and seismic source parameters are found from the observed near-field seismic ground motions at the South-eastern Korean Peninsula. The non-linear numerical algorithm applied in this study is Levenberg-Marquadet method. All the 25 sets of horizontal ground motions (east-west and north-south components at each seismic station) from 3 events (micro to macro scale) were used for the analysis of damping values and source parameters. The non-linear damping values of the deep and shallow crustal materials were found to be more similar to those of the region of the Western United States. The seismic source parameters found from this study also showed that the resultant stress drop values are relatively low compared to those of the Western United Sates. Consequently, comparisons of the various seismic parameters from this study and those of the United States Seismo-tectonic data suggest that the seismo-tectonic characteristics of the South eastern Korean Peninsula is more similar to those of the Western U.S.

CONFOCAL LASER SCANNING MICROSCOPIC MORPHOLOGY OF DENTIN-RESIN INTERFACE AND ITS RELATIONSHIP WITH SHEAR BOND STRENGTH (상아질-레진 계면의 공초점 현미경적 형태 및 전단결합강도와의 관계)

  • Choi, Nak-Won;Cho, Byeong-Hoon;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.2
    • /
    • pp.310-321
    • /
    • 1999
  • In this in vitro study, confocal laser scanning microscopic morphology of dentin-resin interface and its relationship to shear bond strength were investigated after the exposed dentin surfaces were treated with 3 different kinds of dentin adhesive systems[three-step; Scotchbond Multi-Purpose Plus(SMPP), self-priming bonding resin; Single Bond(SB), self-etching primer; Clearfil Liner Bond 2(LB2)]. 52 extracted human molar teeth without caries and/or restorations. The experimental teeth were randomly divided into three groups of seventeen teeth each. In five teeth of each group, class V cavities(depth: 1.5mm) with 900 cavosurface angles were prepared at the cementoenamel junction on buccal and lingual surfaces. Bonding resins of each dentin adhesive system were mixed with rhodamine B. Primer of SMPP was mixed with fluorescein. In group 1. the exposed dentin was conditioned with etchant, applied with above primer and bonding resin of SMPP. In group 2, with etchant and self-priming bonding agent of SB. In group 3, with self-etching primer and bonding agent of LB2. After treatment with dentin adhesive systems, composite resin were applied and photocured. The experimental teeth were cut longitudinally through the center line of restoration and grounded so that about $90{\mu}m$-thick wafers of buccolingually orientated dentin were obtained. And, $70{\sim}80{\mu}m$-thick wafers sectioned horizontally, thus presenting a dentinal tubules at 900 to the cut surface of a remaining tooth, were obtained. Primer of SMPP mixed with rhodamine B was applied to these wafers. Confocal laser scanning microscopic investigations of these wafers were done within of 24 hours after treatment. To measure shear bond strength, the remaining twelve teeth of each group were grounded horizontally below the dentinoenamel junction, so that no enamel remained. After applying dentin adhesive systems on the dentin surface, composite was applied in the shape of cylinder. The cylinder was 5mm in diameter, and 2mm in thickness. Shear bond strength was measured using Instron with a cross-head speed of 0.5mm/min. It was concluded as follows ; 1. Hybrid layer of SMPP(mean: $4.56{\mu}m$) was thicker than that of any other groups. This value was not statistically significant thicker than that of SB(mean: $3.41{\mu}m$, p>0.05), and significant thicker than that of LB2(mean: $1.56{\mu}m$, p<0.05). There was a statistical difference between SB and LB2(p<0.05). 2. Although there were variations in the length of resin tag even in a sample, and in a group, most samples in SMPP and SB showed resin tags extending above $20{\mu}m$. But samples in LB2 showed resin tags of $10{\mu}m$ at best. 3. Besides primer's infiltration into demineralized peritubular dentin and dentinal tubules, fluorophore of primer was detected in the lateral branches of dentinal tubules. 4. All groups demonstrated statistically significant differences from one another(p<0.05), with shear bond strengths given in descending order as follows: SMPP(18.3MPa), SB(16.0MPa) and LB2(12.4MPa). 5. LB2 having thinnest hybrid layer($1.56{\mu}m$) showed the lowest shear bond strength(12.4MPa).

  • PDF

Effect of cavity shape, bond quality and volume on dentin bond strength (와동의 형태, 접착층의 성숙도, 및 와동의 부피가 상아질 접착력에 미치는 영향)

  • Lee, Hyo-Jin;Kim, Jong-Soon;Lee, Shin-Jae;Lim, Bum-Soon;Baek, Seung-Ho;Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.6
    • /
    • pp.450-460
    • /
    • 2005
  • The aim of this study was to evaluate the effect of cavity shape, bond quality of bonding agent and volume of resin composite on shrinkage stress developed at the cavity floor. This was done by measuring the shear bond strength with respect to iris materials (cavity shape , adhesive-coated dentin as a high C-factor and Teflon-coated metal as a low C-factor), bonding agents (bond quality: $Scotchbond^{TM}$ Multi-purpose and Xeno III) and iris hole diameters (volume; 1mm or 3mm in $diameter{\times}1.5mm$ in thickness). Ninety-six molars were randomly divided into 8 groups ($2{\times}2{\times}2$ experimental setup). In order to simulate a Class I cavity, shear bond strength was measured on the flat occlusal dentin surface with irises. The iris hole was filled with Z250 restorative resin composite in a bulk-filling manner. The data was analyzed using three-way ANOVA and the Tukey test. Fracture mode analysis was also done When the cavity had high C-factor, good bond quality and large volume, the bond strength decreased significantly The volume of resin composite restricted within the well-bonded cavity walls is also be suggested to be included in the concept of C-factor, as well as the cavity shape and bond quality. Since the bond quality and volume can exaggerate the effect of cavity shape on the shrinkage stress developed at the resin-dentin bond, resin composites must be filled in a method, which minimizes the volume that can increase the C-factor.