DOI QR코드

DOI QR Code

Direct Tensile Properties of Fiber-Reinforced Cement Based Composites according to the Length and Volume Fraction of Amorphous Metallic Fiber

비정질 강섬유의 길이 및 혼입률에 따른 섬유보강 시멘트복합체의 직접인장특성

  • Kim, Hong-Seop (Department of Architecture, The University of Tokyo) ;
  • Kim, Gyu-Yong (Department of Architectural Engineering, Chungnam National University) ;
  • Lee, Sang-Kyu (Department of Architectural Engineering, Chungnam National University) ;
  • Choe, Gyeong-Cheol (Institute of Social Infrastructure Technology, Chungnam National University) ;
  • Nam, Jeong-Soo (Department of Architectural Engineering, Chungnam National University)
  • Received : 2019.02.12
  • Accepted : 2019.04.18
  • Published : 2019.06.20

Abstract

In this study, the direct tensile properties of amorphous metallic fiber-reinforced cement based composites according to the strain was evaluated. A thin plate-shape amorphous metallic fiber with 15mm and 30mm in length was used. And fiber-reinforced cement based composites were prepared with contents of 1.0, 1.5, 2.0%. The direct tensile test was conducted under the conditions of $10^{-6}/s(static)$ and $10^1/s(dynamic)$ strain rate. As a results, amorphous metallic fiber with a length of 15mm was observed in pull-out behavior from the cement matrix because of the short fiber length and large portion of mixed fiber. On the other hand, amorphous metallic fiber with a length of 30mm were not pulled out from matrix because the bonding force between the fiber and matrix was large due to rough surface and large specific surface area. However, fracture occurred because thin plate shape fibers were vulnerable to shear force. Tensile strength, strain capacity and toughness were improved due to the increase in the fiber length. The dynamic increase factor of L15 was larger that of L30 because the bonding performance of the fiber-matrix interface is significantly affected by the strain rate.

본 연구에서는 변형속도에 따른 비정질 강섬유보강 시멘트복합체의 직접인장특성에 대하여 평가하였다. 길이 15, 30mm의 박판형 비정질 강섬유를 각각 1.0, 1.5, 2.0% 혼입한 섬유보강 시멘트복합체를 제작하였으며, 변형속도 $10^{-6}/s$(정적), $10^1/s$(동적)의 조건에서 직접인장시험을 수행하였다. 그 결과, 길이 15mm의 비정질 강섬유는 섬유의 섬유의 길이가 짧고 혼입개체수가 많기 때문에 섬유가 매트릭스로부터 인발되었다. 반면, 길이 30mm의 비정질 강섬유는 섬유의 표면이 거칠고 비표면적이 크기 때문에 매트릭스와의 부착성능이 우수하지만, 박판형의 섬유 형상이 전단력에 약하기 때문에 섬유가 인발되지 않고 파단 되었다. 섬유의 길이가 길수록 인장강도, 변형능력 및 인성이 큰 것으로 나타났다. 반면, 길이 30mm의 비정질 강섬유는 매트릭스로부터 인발되지 않고 파단 되지만 길이 15mm의 비정질 강섬유는 매트릭스로부터 인발되기 때문에 변형속도의 영향을 받는 섬유-매트릭스 계면의 부착효율이 크게 되어, 인장강도, 변형능력 및 인성에 대한 동적증가계수가 큰 것으로 나타났다.

Keywords

GCSGBX_2019_v19n3_201_f0001.png 이미지

Figure 1. Shape of amorphous metallic fiber

GCSGBX_2019_v19n3_201_f0002.png 이미지

Figure 2. Dumbbell shape tensile test specimen

GCSGBX_2019_v19n3_201_f0003.png 이미지

Figure 3. Static direct-tensile test equipment

GCSGBX_2019_v19n3_201_f0004.png 이미지

Figure 5. Direct tensile stress-strain curve according to the strain rate

GCSGBX_2019_v19n3_201_f0005.png 이미지

Figure 6. Fiber fracture properties

GCSGBX_2019_v19n3_201_f0006.png 이미지

Figure 8. DIF of tensile properties according to the fiber length

GCSGBX_2019_v19n3_201_f0007.png 이미지

Figure 7. Tensile properties according to the strain rate and fiber length

GCSGBX_2019_v19n3_201_f0008.png 이미지

Figure 4. Dynamic direct-tensile test equipment

Table 1. Mechanical properties of the amorphous fibers

GCSGBX_2019_v19n3_201_t0001.png 이미지

Table 2. Details of specimen and compressive strength

GCSGBX_2019_v19n3_201_t0002.png 이미지

Table 3. Mix proportions of AFRCC

GCSGBX_2019_v19n3_201_t0003.png 이미지

Table 4. Mechanical properties of used materials

GCSGBX_2019_v19n3_201_t0004.png 이미지

References

  1. Naaman A, Shah S. Pull-out mechanism in steel fiber-reinforced concrete. Journal of the Structural Divsion. 1976;102(8):1537-48. https://doi.org/10.1061/JSDEAG.0004409
  2. Chan Y, Chu S. Effect of silica fume on steel fiber bond characteristics in reactive powder concrete. Cement Concrete Research. 2004;34(7):1167-72. https://doi.org/10.1016/j.cemconres.2003.12.023
  3. Li V, Wang Y, Backer S. Effect of inclining angle, bundling and surface treatment on synthetic fibre pull-out from a cement matrix. Composites. 1990;21(2):132-40.https://doi.org/10.1016/0010-4361(90)90005-H
  4. Kim HS, Kim GY, Lee SK, Son MJ, Choe GC, Nam JS. Strain rate effects on the compressive and tensile behavior of bundle-type polyamide fiber-reinforced cementitious composites. Composites Part B. 2019 mar;160:50-65. https://doi.org/10.1016/j.compositesb.2018.10.008
  5. Nam JS, Shinohara Y, Atou T, Kim HS, Kim GY. Comparative assessment of failure characteristics on fiber-reinforced cementitious composite panels under high-velocity impact. Composites Part B. 2016 Aug;99:84-97. https://doi.org/10.1016/j.compositesb.2016.06.008
  6. Won JP, Hong BT, Choi TJ, Lee SJ, Kang JW. Flexural behaviour of amorphous micro-steel fibre-reinforced cement composites. Composite Structures. 2012 Mar;94(4):1443-9. https://doi.org/10.1016/j.compstruct.2011.11.031
  7. Park KW, Lee JS, Kim W, Kim DJ, Lee GY. Cracking behavior of RC tension members reinforced with amorphous steel fibers. Journal of the Korea Concrete Institute. 2014 Aug;26 (4):475-82. https://doi.org/10.4334/JKCI.2014.26.4.475
  8. Ku DO, Kim SD, Kim HS, Choi KK. Flexural performance characteristics of amorphous steel fiber-reinforced concrete. Journal of the Korea Concrete Institute. 2014 Aug;26(4):483-9. https://doi.org/10.4334/JKCI.2014.26.4.483
  9. Yoo DY, Banthia N., Yang JM, Yoon YS. Size effect in normal-and high-strength amorphous metallic and steel fiber reinforced concrete beams. Construction and Building Materials. 2016 Sep;121:676-85. https://doi.org/10.1016/j.conbuildmat.2016.06.040
  10. Choi SJ, Hong BT, Lee SJ, Won JP. Shrinkage and corrosion resistance of amorphous metallic fiber-reinforced cement composites. Composite Structures. 2014 Jan;107:537-43. https://doi.org/10.1016/j.compstruct.2013.08.010
  11. Kim HS, Kim GY, Nam JS, Kim JH, Han SH, Lee GY. Static mechanical properties and impact resistance of amorphous metallic fiber-reinforced concrete. Composite Structures. 2015 Dec;134:831-44. https://doi.org/10.1016/j.compstruct.2015.08.128