• 제목/요약/키워드: 경사실험

Search Result 1,411, Processing Time 0.033 seconds

A FEM comparison study about the force, displacement and initial stress distribution on the maxillary first molars by the application of Asymmetric Head-Gears with the different traction forces (Asymmetric Head-Gear의 견인력의 차이에 따른 상악 제 1 대구치에 나타나는 힘과 변위 및 초기 응력분포에 관한 유한요소법적 비교 연구)

  • Cha, Kyung-Suk
    • The korean journal of orthodontics
    • /
    • v.31 no.3 s.86
    • /
    • pp.311-323
    • /
    • 2001
  • One of the various mechanics used to treat unilateral Class II malocclusion is head gear with asymmetric face bow. We made the finite element models of unilateral Class II maxillary dental arch and power arm asymmetric face bow. We designed this experiment to observe stress distribution of periodontal ligament, reaction force, and displacement and to understand force system, so to predict the therapeutic effect. On the basis of computerized tomograph of maxillary dental arch of 25 years old male with normal occlusion without extraction and orthodontic treatment history, we made finite element models of maxillary dental arch and periodontal ligament. Then we modified that model to unilateral maxillary Class II malocclusion model of which maxillary left molar displaced mesially. Also, We made finite element model of asymmetric face bow of which right outer bow shorter than left by 25mm(RMO, Penta-FormTM/Medium size, 0.045 inch iner bow, 0.072 inch outer bow). After that, retraction force of 250g, 300b, 350g were applied to maxillary first molar. We concluded as follow. 1. The Net force that both maxillary first molars were received increased as the retraction force increased. Mesially positioned tooth received more force than normally positioned tooth. But, both tooth were received distal force, so distal movement occured. 2. Both tooth received buccal lateral force. In analysis of force element, as the retraction force were increased, force of X-axis at mesially positioned tooth decreased, and force of X-axis at normally positioned tooth increased. so lateral force component moved to the side received less force from more force. 3. There were rotation, tipping with distal movement in maxillary first molar. As retraction force were increased, rotation and tipping also increased. More tipping and rotation occured at the side received more force, that is, mesially positioned tooth. Though it Is small change, displacement of same pattern occur in normally positioned tooth

  • PDF

Effect of the Number and Location of Implants on the Stress Distribution in Three-unit Fixed Partial Denture: A Three-Dimensional Finite Element Analysis (임플란트 고정성 보철물에서 수와 식립위치 변화에 따른 골과 임플란트에서의 응력분포에 관한 3차원 유한요소법적 연구)

  • Lee, Woo-Hyun;Lim, Jong-Hwa;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.3
    • /
    • pp.221-239
    • /
    • 2010
  • Bone loss may occur depending on the loading conditions. careful treatment planning and prosthetic procedures are very important factors for the proper distribution of stress. Evaluate the stress distributions according to numbers and location of implants in three-unit fixed partial dentures. A mandible missing the right second premolar, first molar and second molar was modeled. Using the CT data. we modeled a mandible with a width of 15mm, a height of 20mm and a length of 30mm, 2mm-thickness cortical bone covering cancellous bone mallow. An internal type implant and A solid type abutment was used. A model with 3 implants placed in a straight line, offset 1.5 mm buccally, offset 1.5 mm lingually and another model with 3 implants offset in the opposite way were prepared. And models with 2 implants were both end support models, a mesial cantilever model and a distal cantilever model. Three types of loading was applied; a case where 155 N was applied solely on the second premolar, a case where 206 N was applied solely on the second molar and a case where 155 N was applied on the first premolar and 206 N was applied on the first and second molar. For all the cases, inclined loads of 30 degrees were applied on the buccal cusps and vertical loads were applied on the central fossas of the teeth. Finite element analysis was carried out for each case to find out the stress distribution on bones and implants. This study has shown that prostheses with more implants caused lower stress on bones and implants, no matter what kind of load was applied. Furthermore, it was found out that inclined loads applied on implants had worse effects than vertical loads. Therefore, it is believed that these results should be considered when placing implants in the future.

Characteristic of Wave Diffraction and Reflection for Irregular Waves in SWASH Model Around Small Port Structures (소규모 항만 구조물 주변에서 불규칙파에 대한 SWASH 모형의 반사 및 회절)

  • Kwon, Kyong Hwan;Park, Chang Wook;Park, Il Heum;Kim, Jong Hoon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.468-477
    • /
    • 2019
  • The numerical model of Boussinesq approximation, which is mainly used for evaluating the port calmness due to the irregular waves, has a limit of applicability of lattice size in ports such as marinas with narrow port openings of around 30m. The SWASH model controls the partial reflection according to the depth, porosity coefficient and structure size when applying the reflected wave incident on the structure and terrain. In this study, the partial reflection evaluation at the front of the structure according to the bottom shape and the shape of the structure are examined. In order to evaluate the reproducibility of the model due to the diffraction waves entering the term, the area of incidence at right angles and inclination of the structure is constructed and compared with the diffraction theory suggested by Goda et al. (1978). The experimental results of the sectional structure reflectances calculated as the depth mean show reflectances similar to the approximate values of the reflectances presented by Stelling and Ahrens (1981). It is considered that the reflected wave is well reproduced according to the control of the reflected wave at the boundary and the shape and topography of the structure. Compared with previous studies to examine the diffraction of the wave incident from the breakwater opening, the wave incidence angle and the shape of the diffraction wave are very similar to the theoretical values, but both oblique and rectangular incidence In the case where the direction concentration is small, the diffraction degree is underestimated in some sections with the crest ratio of 0.5 to 0.6.

Gaussian Filtering Effects on Brain Tissue-masked Susceptibility Weighted Images to Optimize Voxel-based Analysis (화소 분석의 최적화를 위해 자화감수성 영상에 나타난 뇌조직의 가우시안 필터 효과 연구)

  • Hwang, Eo-Jin;Kim, Min-Ji;Jahng, Geon-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.4
    • /
    • pp.275-285
    • /
    • 2013
  • Purpose : The objective of this study was to investigate effects of different smoothing kernel sizes on brain tissue-masked susceptibility-weighted images (SWI) obtained from normal elderly subjects using voxel-based analyses. Materials and Methods: Twenty healthy human volunteers (mean $age{\pm}SD$ = $67.8{\pm}6.09$ years, 14 females and 6 males) were studied after informed consent. A fully first-order flow-compensated three-dimensional (3D) gradient-echo sequence ran to obtain axial magnitude and phase images to generate SWI data. In addition, sagittal 3D T1-weighted images were acquired with the magnetization-prepared rapid acquisition of gradient-echo sequence for brain tissue segmentation and imaging registration. Both paramagnetically (PSWI) and diamagnetically (NSWI) phase-masked SWI data were obtained with masking out non-brain tissues. Finally, both tissue-masked PSWI and NSWI data were smoothed using different smoothing kernel sizes that were isotropic 0, 2, 4, and 8 mm Gaussian kernels. The voxel-based comparisons were performed using a paired t-test between PSWI and NSWI for each smoothing kernel size. Results: The significance of comparisons increased with increasing smoothing kernel sizes. Signals from NSWI were greater than those from PSWI. The smoothing kernel size of four was optimal to use voxel-based comparisons. The bilaterally different areas were found on multiple brain regions. Conclusion: The paramagnetic (positive) phase mask led to reduce signals from high susceptibility areas. To minimize partial volume effects and contributions of large vessels, the voxel-based analysis on SWI with masked non-brain components should be utilized.

COMPARISON OF SCREW-IN EFFECT FOR SEVERAL NICKEL-TITANIUM ROTARY INSTRUMENTS IN SIMULATED RESIN ROOT CANAL (모형 레진 근관에서 수종의 전동 니켈-티타늄 파일에 대한 screw-in effect 비교)

  • Ha, Jung-Hong;Jin, Myoung-Uk;Kim, Young-Kyung;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.4
    • /
    • pp.267-272
    • /
    • 2010
  • Screw-in effect is one of the unintended phenomena that occurs during the root canal preparation with nickel-titanium rotary files. The aim of this study was to compare the screw-in effect among various nickel-titanium rotary file systems. Six different nickel-titanium rotary instruments (ISO 20/.06 taper) were used: $K3^{TM}$ (SybronEndo, Glendora, CA, USA), $M_{two}$ (VDW GmbH, Munchen, Germany), NRT with safe-tip and with active tip (Mani Inc., Shioya-gun, Japan), ProFile$^{(R)}$ (Dentsply-Maillefer, Ballaigues, Switzerland) and ProTaper$^{(R)}$ (Dentsply-Maillefer, Ballaigues, Switzerland). For ProTaper$^{(R)}$, S2 was selected because it has size 20. Root canal instrumentations were done in sixty simulated single-curved resin root canals with a rotational speed of 300 rpm and single pecking motion. A special device was designed to measure the force of screw-in effect. A dynamometer of the device recorded the screw-in force during simulated canal preparation and the recorded data was stored in a computer with designed software (LCV-USE-VS, Lorenz Messtechnik GmbH, Alfdorf, Germany). The data were subjected to one-way ANOVA and Tukey's multiple range test for post-hoc test. P value of less than 0.05 was regarded significant. ProTaper$^{(R)}$ produced significantly more screw-in effects than any other instruments in the study (p < 0.001). $K3^{TM}$ produced significantly more screw-in effects than $M_{two}$, and ProFile$^{(R)}$ (p < 0.001). There was no significant difference among $M_{two}$, NRT, and ProFile$^{(R)}$ (p > 0.05), and between NRT with active tip and NRT with safe one neither (p > 0.05). From the result of the present study, it was concluded, therefore, that there seems significant differences of screw-in effect among the tested nickel-titanium rotary instruments. The radial lands and rake angle of nickel-titanium rotary instrument might be the cause of the difference.

STUDY ON THE ANCHOVY BOAT SEINE 1. On the Hydrodynamic Resistance and Performance of the Conventional Gear (기선기현강의 연구 1, 재래식 어구의 유구저황과 그물꼴에 관하여)

  • LEE Byoung-gee;YANG Yong-rim;SU Young-tae;SON Boo-il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.4 no.3_4
    • /
    • pp.79-91
    • /
    • 1971
  • A boat seine has been used as a major fishing gear for catching anchovy (Engraulis japonica) in the southern coastal waters of Korea since 1920s. The original seine was operated by two rowing boats as the haul seine. The rowing boats were, in recent, replaced by powered boats. The net size was enlarged by more than three times the original nit as they began to by operated in the deeper waters of approximately sixty meters. However, there are many problems in the efficiency of the fishing gear to be improved. The authors studied on the hydrodynamic resistance and performance of the boat seine net of the 1/10 scale model in tow. The results are summaried as follows. 1. The hydrodynamic resistance converted from model experiment into the full scale is: $$R_1=30,000\;v^{1.2}\;(0.2{\leqq}v{\leqq}1.0)$$ $$R_2=16,000\;v^2\;(0.2{\leqq}v{\leqq}0.6)$$ where $R_1$ and $R_2$ denote the resistance of whole gear and of bag net in kg respectively, and v the speed of flow in m/sec. 2. In the extension wing, approximately seventy percent of the length of the ground rope from the towing end to the inside-wing slopes down from sea level toward the sea bottom, while the thirty percent of the inside of it remains parallel with th: 5:a level. The performance is regarded to b: inefficient for driving fish shoal into the inside-wing, especially for the shoal diving suddenly. 3. At the towing speed higher than 0.2 m/sec, the trailing edge of the inside-wing is blown backward beyond the seaming line connecting the inside-wing and the mouth of the bag net. It is regarded as an unreasonable performance to drive the fish shoal smoothly into the bag net. 4. At the towing speed higher than 0.2 m/sec, the posterior end of the lower bosom is lifted up above the level of the ground rope of the inside-wing. It is considered that the fish shoal diving suddenly can escape through the discrepancy between the lower bosom and the sea bottom, even if the ground rope of the inside-wing sweeps the sea bottom. 5. The angle of inclination of the upper bosom is estimated as $35\~40^{\circ}$. It seems that the inclination is too steep to drive smoothly the fish shoal diving toward the sea bottom into the bag net. 6. In structure, circumference of the posterior section of the bag net is wider by 1.3 times that of the anterior section. Actually in towing at a speed higher than 0.2m/sec, however, the circumference of the posterior section becomes smaller than that of the anterior section. It is recommended to be designed in a long cylindrical form.

  • PDF

Terrain Shadow Detection in Satellite Images of the Korean Peninsula Using a Hill-Shade Algorithm (음영기복 알고리즘을 활용한 한반도 촬영 위성영상에서의 지형그림자 탐지)

  • Hyeong-Gyu Kim;Joongbin Lim;Kyoung-Min Kim;Myoungsoo Won;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.637-654
    • /
    • 2023
  • In recent years, the number of users has been increasing with the rapid development of earth observation satellites. In response, the Committee on Earth Observation Satellites (CEOS) has been striving to provide user-friendly satellite images by introducing the concept of Analysis Ready Data (ARD) and defining its requirements as CEOS ARD for Land (CARD4L). In ARD, a mask called an Unusable Data Mask (UDM), identifying unnecessary pixels for land analysis, should be provided with a satellite image. UDMs include clouds, cloud shadows, terrain shadows, etc. Terrain shadows are generated in mountainous terrain with large terrain relief, and these areas cause errors in analysis due to their low radiation intensity. previous research on terrain shadow detection focused on detecting terrain shadow pixels to correct terrain shadows. However, this should be replaced by the terrain correction method. Therefore, there is a need to expand the purpose of terrain shadow detection. In this study, to utilize CAS500-4 for forest and agriculture analysis, we extended the scope of the terrain shadow detection to shaded areas. This paper aims to analyze the potential for terrain shadow detection to make a terrain shadow mask for South and North Korea. To detect terrain shadows, we used a Hill-shade algorithm that utilizes the position of the sun and a surface's derivatives, such as slope and aspect. Using RapidEye images with a spatial resolution of 5 meters and Sentinel-2 images with a spatial resolution of 10 meters over the Korean Peninsula, the optimal threshold for shadow determination was confirmed by comparing them with the ground truth. The optimal threshold was used to perform terrain shadow detection, and the results were analyzed. As a qualitative result, it was confirmed that the shape was similar to the ground truth as a whole. In addition, it was confirmed that most of the F1 scores were between 0.8 and 0.94 for all images tested. Based on the results of this study, it was confirmed that automatic terrain shadow detection was well performed throughout the Korean Peninsula.

8년여의 세월호 사고원인 규명활동 결과의 정리와 분석 (1/2)

  • 조상래
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.61 no.1
    • /
    • pp.16-29
    • /
    • 2024
  • 2014년 4월 18일 오전 8시 48분경 전라남도 병풍도 인근 해역에서 세월호는 전복된 후 침몰하였다. 사고 당시 이 배에는 승객 443명과 선원 및 승무원 33명 모두 476명이 타고 있었고, 이 중 미수습자 5명을 포함하여304명이 생명을 잃었다. 그 동안 공식적인 사고원인 규명활동이 꾸준히 진행되어 이 사고의 원인을 규명하기 위한 조사가 네 차례 있었다. 하지만 아직까지 사고 원인이 무엇인지 명쾌하게 밝혀지지 않고 있다. 이 글에서는 먼저 그동안 있었던 네 차례의 공식적인 세월호 사고원인 규명활동을 정리하였다. 가장 먼저 사고원인 규명활동을 전개한 해양안전심판원 특별조사부는 2014년 사고 직후부터 그해 12월까지 활동하였다. 특별조사부 최종보고서에는 화물의 과적과 평형수 적재 부족으로 인한 선박복원성 기준 미달, 타각의 대각도 조타와 장시간 유지로 인한 부적절한 조타, 화물의 부실한 고박으로 인한 화물의 이동, 수밀문의 관리 부실로 인한 조기 침수와 비상대피장소(muster station)로의 승객대피 조치 미이행을 사고의 원인으로 들고 있다. 2015년 3월부터 2016년 6월까지 활동한 4·16세월호참사 특별조사위원회(특조위)는 '4·16 세월호 참사 특별 조사위원회 청산 백서'만을 간행하고 최종보고서를 제출하지 못한 채 활동을 종료하였다. 세월호 선체조사위원회(선조위)는 2017년 4월부터 2018년 8월까지 활동하였다. 선조위는 세월호 사고원인 규명을 위한 다른 기구에 비해 위원의 구성도 균형이 있었고, 직권사건 위주의 조사방법도 적절하였다. 또한 조타기와 조타 과실 여부, 급선회 항적 및 횡경사와 핀안정기의 물리적 손상에 관한 용역을 국내 여러 기관에 발주하였다. 뿐만 아니라 다양한 해양사고 원인규명 용역에 참여한 실적이 있는 영국의 기술용역회사인 Brookes Bell에 급선회와 빠른 침몰의 원인 조사를 요청하였다. 아울러 세계에서 가장 활발히 수조실험을 수행하고 있는 상업 연구소인 네덜란드의 MARIN에 수조시험과 시뮬레이션도 의뢰하였다. 하지만 아쉽게도 선조위는 서로 다른 사고 원인을 주장하는 두 권의 종합보고서를 간행하였다. 종합보고서로 '내인설' 종합보고서[6]는 타기 솔레노이드 밸브의 고착으로 시작된 급선회를 사고의 직접 원인으로 지목하고 있다. 하지만 '열린안' 종합보고서[7]에서는 수중체와의 충돌을 직접적인 사고 원인으로 밝히고 있다. 마지막으로 가습기살균제 사건과 4·16세월호 참사 특별조사위원회(사참위)가 2019년 3월부터 2022년 9월까지 활동하였다. 사참위는 위원으로 조선해양공학과 항해학 전문가가 포함되어 있지 않아 세월호의 사고원인 규명활동을 효과적으로 수행하기에는 적절하지 못하였다. 사참위는 주로 조타장치 고장에 따른 세월호 전타 선회현상 검증, 세월호 변형 손상부의 확인 및 원인 조사와 세월호 횡경사 원인과 침수과정 분석을 직권 과제로 추진하였다. 또한 네덜란드 MARIN에 자유항주시험을 추가로 의뢰하였으며, 핀란드의 NAPA group에도 복원성 계산과 침수해석을 의뢰하였다. 사참위는 선조위의 두 가지 사고원인에 대해 '내인설'의 솔레노이드 밸브 고착은 사고원인일 가능성이 매우 낮고, '열린안'의 수중체와의 충돌 시나리오는 근거가 부족함을 확인하였다. 이상에서 정리한 바와 같이 규명활동이 진행됨에 따라 사고원인이 수렴되어야 함에도 불구하고 아직까지 원인을 시원하게 밝히지 못하고 있다. 이 글에서는 사고원인 규명활동을 수행한 네 개 기구의 구성과 활동 내용을 비교하고, 사고조사 위원회의 바람직한 구성과 위원회의 운영 방법을 제시하고 있다. 또한 Brookes Bell 보고서에 수록된 출항 당시의 흘수에 근거한 배수량과 선미 램프의 폐쇄 전후의 횡경사각으로부터 도출한 GoM도 소개하고 있다. 아울러 출항 당시의 GoM값으로 추정한 사고 당시의 GoM값도 소개하고 있고, 수중체와의 충돌 시나리오를 후보 사고 시나리오에서 제외시켜야 할 이유도 열거하고 있다. 끝으로 해양사고 원인규명 활동이 보다 과학적으로 그리고 보다 합리적으로 이루어질 수 있기 위해 그리고 우리 사회의 안전문화 제고를 위한 몇 가지의 방안을 제시하고 있다. 또한 세월호 사고로 치른, 아직도 치르고 있는 희생을 딛고 해양안전문화가 한 걸음 더 나아가기 위해서는 세월호 사고의 원인을 반드시 규명해야 한다는 말씀으로 글을 마무리하고 있다.

  • PDF

A Study on the Stress Distribution of Tooth/Implant Connected with Konus Telescope Denture Using 3-Dimensional Finite Element Method (이중관으로 연결된 자연치와 임플랜트의 악골 내응력분포에 관한 3차원 유한요소분석)

  • Lee, Su-Ok;Choi, Dae-Gyun;Kwon, Kung-Rock;Woo, Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.4
    • /
    • pp.381-395
    • /
    • 2008
  • Purpoose: For decades dental implants have been used widely in the field of prosthetic dentistry. However there is confusion when establishing treatment plans in cases where some teeth are remained but an insufficient number of implants can be used due to limited anatomical status and ecomomical problems. Many clinicians have tried to connect natural teeth and implants, and it still has controversy. But, there have been few studies on mechanical analysis of connecting natural teeth and implants with konus telescopic removable partial dentures. The purpose of this study was to analyze the stress distribution of prosthesis, abutment and alveolar bone when teeth and implants were connected with the konus telescopic denture, by means of 3-dimensional finite element analysis. Material and methods: The assumption of this study was that there were 2 mandibular canine (11 mm in length, 4 mm in diameter) and 2 implants(10 mm in length, 4 mm in diameter) which are located in the second premolar region. The mandible, teeth, implants, abutments, and connectors are modeled, and analyzed with the commercial software, ANSYS Version 8.1(Swanson, Inc., USA). The control group used implants instead of natural teeth. 21038 elements, 23544 nodes were used in experimental group and 107595 elements, 21963 nodes were used in control group, Stress distribution was evaluated under 150 N vertical load on 3 experimental conditions - between teeth and implants (Load case 1), posterior to implants (Load case 2), between natural teeth (Load case 3). Results: 1. In all load cases, higher von mises stress value was observed in the experimental group. 2. Maximum von miss stress observed in all load cases and all locations were as follows ; a. 929.44 Mpa in the experimental group, 640.044 Mpa in the control group in outer crown and connector - The experimental group showed 1.45 times high value compared with the control group. b. 145,051 Mpa in the experimental group, 142.338 Mpa in the control group in abutment - The experimental group showed 1.02times high value compared with the control group. c. 32.489 Mpa in the experimental group, 25.765 Mpa in the control group in alveolar bone - The experimental group showed 1.26times higher value compared with the control group. 3. All maximum von mises stress was observed in load case 2, and maxim von mises stress in alveolar bone was 32.489 Mpa at which implant failure cannot occur. 4. If maximum von mises stress is compared between two groups, the value of the experimental group is 1.02 times higher than the control group in abutment, 1.26 times higher than the control group in alveolar bone. Conclusion: If natural teeth and implants are connected with the konus telescopic denture, maximum stress will be similar in abutment, 1.26 times higher in alveolar bone than the control group. With this result, there may be possible to make to avoid konus telescopic dentures where natural teeth and implants exist together.

3-D Finite element stress analysis in screw-type, cement-type, and combined-type implant fixed partial denture designs (임플란트 상부보철물의 유지형태에 따른 3차원 유한요소 응력분석)

  • Lee, Sung-Chun;Kim, Seok-Gyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.365-375
    • /
    • 2009
  • Statement of problems: Stress analysis on implant components of the combined screw- and cement-retained implant prosthesis has not investigated yet. Purpose: The purpose of this study was to assess the load distribution characteristics of implant prostheses with the different prosthodontic retention types, such as cement-type, screw-type and combined type by using 3-dimensional finite element analysis. Material and methods: A 3-dimensional finite element model was created in which two SS II implants (Osstem Co. Ltd.) were placed in the areas of the first premolar and the first molar in the mandible, and three-unit fixed partial dentures with four different retention types were fabricated on the two SS II implants. Model 1 was a cement-retained implant restoration made on two cement-retained type abutments (Comocta abutment; Osstem Co. Ltd.), and Model 2 was a screw-retained implant restoration made on the screw-retained type abutments (Octa abutment; Osstem Co. Ltd.). Model 3 was a combined type implant restoration made on the cement-retained type abutment (Comocta abutment) for the first molar and the screw-retained type abutment (Octa abutment) for the first premolar. Lastly, Model 4 was a combined type implant restoration made on the screw-retained type abutment (Octa abutment) for the first molar and the cement-retained type abutment (Comocta abutment) for the first premolar. Average masticatory force was applied on the central fossa in a vertical direction, and on the buccal cusp in a vertical and oblique direction for each model. Von-Mises stress patterns on alveolar bone, implant body, abutment, abutment screw, and prosthetic screw around implant prostheses were evaluated through 3-dimensional finite element analysis. Results: Model 2 showed the lowest von Mises stress. In all models, the von Mises stress distribution of cortical bone, cancellous bone and implant body showed the similar pattern. Regardless of loading conditions and type of abutment system, the stress of bone was concentrated on the cortical bone. The von-Mises stress on abutment, abutment screw, and prosthetic screw showed the lower values for the screw-retained type abutment than for the cement-retained type abutment regardless of the model type. There was little reciprocal effect of the abutment system between the molar and the premolar position. For all models, buccal cusp oblique loading caused the largest stress, followed by buccal cusp vertical loading and center vertical loading. Conclusion: Within the limitation of the FEA study, the combined type implant prosthesis did not demonstrate more stress around implant components than the cement type implant prosthesis. Under the assumption of ideal passive fit, the screw-type implant prosthesis showed the east stress around implant components.