DOI QR코드

DOI QR Code

Characteristic of Wave Diffraction and Reflection for Irregular Waves in SWASH Model Around Small Port Structures

소규모 항만 구조물 주변에서 불규칙파에 대한 SWASH 모형의 반사 및 회절

  • Kwon, Kyong Hwan (Department of Naval Architecture & Ocean Engineering, Chonnam National University) ;
  • Park, Chang Wook (Oceanic, Ocean Environment Inst.) ;
  • Park, Il Heum (Department of Naval Architecture & Ocean Engineering, Chonnam National University) ;
  • Kim, Jong Hoon (Oceanic, Ocean Environment Inst.)
  • 권경환 (전남대학교 조선해양공학과) ;
  • 박창욱 ((주)오셔닉 해양환경연구소) ;
  • 박일흠 (전남대학교 조선해양공학과) ;
  • 김종훈 ((주)오셔닉 해양환경연구소)
  • Received : 2019.11.18
  • Accepted : 2019.12.26
  • Published : 2019.12.31

Abstract

The numerical model of Boussinesq approximation, which is mainly used for evaluating the port calmness due to the irregular waves, has a limit of applicability of lattice size in ports such as marinas with narrow port openings of around 30m. The SWASH model controls the partial reflection according to the depth, porosity coefficient and structure size when applying the reflected wave incident on the structure and terrain. In this study, the partial reflection evaluation at the front of the structure according to the bottom shape and the shape of the structure are examined. In order to evaluate the reproducibility of the model due to the diffraction waves entering the term, the area of incidence at right angles and inclination of the structure is constructed and compared with the diffraction theory suggested by Goda et al. (1978). The experimental results of the sectional structure reflectances calculated as the depth mean show reflectances similar to the approximate values of the reflectances presented by Stelling and Ahrens (1981). It is considered that the reflected wave is well reproduced according to the control of the reflected wave at the boundary and the shape and topography of the structure. Compared with previous studies to examine the diffraction of the wave incident from the breakwater opening, the wave incidence angle and the shape of the diffraction wave are very similar to the theoretical values, but both oblique and rectangular incidence In the case where the direction concentration is small, the diffraction degree is underestimated in some sections with the crest ratio of 0.5 to 0.6.

불규칙파에 의한 정온도 평가 시 주로 사용하는 Boussinesq 근사의 수치모형은 항의 개구부 폭이 약 30 m 내외의 좁은 마리나와 같은 소규모 항만에서는 격자 크기의 적용성 한계가 있고, 항 내로 진행하는 파의 회절에 대한 평가 시 정확한 정온도 평가가 어려울 수 있다. 본 연구에서는 정수면의 비정수압 항이 고려되어 해수면과 바닥층에서의 유속으로 계산하는 비선형 천수방정식 모형인 SWASH 모형(Zijlema and Stelling, 2005)을 사용하여 좁은 항의 개구부에서 정온도 평가의 적용성을 검토하였다. SWASH 모형은 구조물 및 지형에 입사하는 반사파 적용 시 수심과 공극율 계수 및 구조물 크기에 따라 부분 반사를 제어한다. 본 연구에서는 실제 구조물 단면 형태에 따른 구조물 전면에서의 반사파의 평가와 단면의 형태 및 구조물의 형태에 따라 반사율 적용성을 검토하였다. 항 내에 진입하는 회절 파랑에 의한 모델의 재현성을 평가하기 위해 구조물 직각 및 경사로 입사하는 영역을 구성하여 기존의 Goda et al.(1978)가 제시한 회절도 이론값과 비교하였다. 수심평균으로 계산된 단면 구조물 반사율 실험 결과는 Stelling and Ahrens(1981)이 제시한 반사율의 개략치와 유사한 반사율을 나타내며, 경계에서의 반사파의 제어와 구조물의 형상 및 지형에 따라 반사파가 잘 재현되는 것으로 판단된다. 회절도 검토 결과 파랑 진입 각도 및 회절파의 형태가 계산치가 이론값과 아주 유사하게 나타나지만, 경사 입사 및 직각 입사 모두 방향 집중도가 작은 경우 파고비가 0.5~0.6인 일부 구간에서 회절도가 저평가되는 것으로 나타났다.

Keywords

References

  1. Deutsches hydrographisches institut (1973). Measurements of Wind-Wave Growth and Swell Decay during the Joint North Sea Wave Project (JONSWAP), Hamburg, Deutsche.
  2. Goda, Y., Takayama, T. and Suzuki, Y. (1978). Diffraction diagrams for directional random waves. Proc. 16th International Conference Coastal Engineering, 628-650.
  3. Goda, Y. (1999). A comparative review on the funtional forms of directional wave spectrum. Coastal Engineering Journal, 41(1), 1-20. https://doi.org/10.1142/S0578563499000024
  4. Lam, D.C.L. and Simpson, R.B. (1976). Centered differencing and the box scheme for diffusion convection problems. Journal of Computational Physics, 220(4), 486-500.
  5. Lee, C.H., Cho, E.K. and Cho, Y.J. (2003). Behavior of extended boussinesq equations on variations of bottom topography. Journal of Korean Society of Civil Engineers, 23(6B), 607-613 (in Korean).
  6. Madsen, P.A., Murray, R. and Sorensen, O.R. (1991). A new form of the Boussinesq equations with improved linear dispersion characteristics. Coastal Engineering, 15, 371-388. https://doi.org/10.1016/0378-3839(91)90017-B
  7. Ministry of oceans and fisheries (2014). Harbor and fishing port design standard explanation (in Korean).
  8. Nwogu, O.G. (1993). Altermative form of Boussinesq equation for nearshore wave propagation. J. Waterway. Port, Coastal and Ocean Engineering, 119, 618-638. https://doi.org/10.1061/(ASCE)0733-950X(1993)119:6(618)
  9. Nwogu, O.G. and Demirbilek, Z. (2001). BOUSS-2D: A Boussinesque wave model for coastal regions and harbors, CHL TR-01-25, Washington, DC.
  10. Stelling, W.N. and Ahrens, J.P. (1981). Estimation of Wave Reflection and Energy Dissipation Coefficients for Beaches, Revetments, and Breakwaters. Technical paper. U.S. Army, Cops of Coastal engineering research center fort belvoir va, Washington, DC.
  11. Stelling, G.S. and Duinmeijer, S.P.A. (2003). A staggered conservative scheme for every Froude number in rapidly varied shallow water flows. Int. J. Numer. Meth. Fluids, 43, 1329-1354. https://doi.org/10.1002/fld.537
  12. Stelling, G. and Zijlema, M. (2003). An accurate and efficient finite difference algorithm for non-hydrostatic free-surface flow with application to wave propagation. Int. J. Numer. Meth. Fluids, 43, 1-23. https://doi.org/10.1002/fld.595
  13. Zijlema, M. and Stelling, G.S. (2005). Further experiences with computing non - hydrostatic free surface flows involving water waves. Int. J. Numer. Meth. Fluids, 48, 169-197. https://doi.org/10.1002/fld.821
  14. Zijlema, M. and Stelling, G.S. (2008). Efficient computation of surf zone waves using the nonlinear shallow water equations with non-hydrostatic pressure. Coastal Engineering, 55, 780-790. https://doi.org/10.1016/j.coastaleng.2008.02.020