• Title/Summary/Keyword: 경량 콘크리트

Search Result 571, Processing Time 0.031 seconds

An Experimental Study for the Strength Variations of High-strength Lightweight Concrete According to Grain-size of Artificial Lightweight Aggregate (인공경량골재의 입도에 따른 고강도 경량콘크리트의 강도변화에 대한 실험적 연구)

  • Kim, Sung Chil;Park, Ki Chan;Choi, Hyoung Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.209-217
    • /
    • 2011
  • In recent days, while taller and more massive structures such as huge bridges and super skyscrapers have been welcomed, the structural stabilization in design and construction have been gradually limited due to the major weakness of current concrete which is relatively heavier when compared with its strength. To improve the weakness of the current concrete, The lightweight concrete with light weight and high strength should be used; however, not many researchers in Korea have studied on the lightweight concrete. Generally, artificial lightweight aggregate produced through high-temperature-plasticization has a possibility of its body-expansion with many bubbles. Therefore, depending on the size of aggregate, the effects of bubbles on the specific weight and strength of the lightweight concrete should be studied. In this study, considering grain-size, the mix design of the artificial lightweight aggregate produced through the high-temperature-plasticization and the body-expansion of waste and clay from the fire power plant in Korea was conducted. The experiment to analyze the variation in specific weight and strength of the lightweight concrete was followed. From these experiments, the optimized grain-size ratio of the artificial lightweight aggregate for the enhancement of high-strength from the lightweight concrete was revealed.

A Study on Carbonation Resistance of Concrete Using Surface-coated Lightweight Aggregates (표면코팅된 경량골재를 사용한 콘크리트의 탄산화 저항성에 관한 연구)

  • Eom, In-Hyeok;Jeong, Euy-Chang;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.1
    • /
    • pp.21-28
    • /
    • 2014
  • The purpose of this study is to investigate the mechanical properties and carbonation resistance of concretes using lightweight aggregate coated surface finishing materials. To evaluate the mechanical properties and carbonation resistance of concrete, slump, air amount, air-dried unit volume weight, compressive strength, and carbonation depth are tested. In terms of the unit volume weight of concrete, air-dried unit volume weight of concrete using coating lightweight aggregate was measured as $1,739{\sim}1,806kg/m^3$. When using coating aggregate, compressive strength of concrete at 28 days was measured as much as 82.7~95.9% of the compressive strength using non-coating aggregate. It is found that compressive strength tends to decrease with coating lightweight aggregate. However, all concretes using coating lightweight aggregate except O-LWAC satisfied the criteria for 28-day compressive strength suggested in KS. The measurement of carbonation depth when the water-repellent agent was used found that carbonation depth was reduced by as much as 2.6~6.1%. On the other hand, when using polymer waterproof agent, carbonation depth was reduced by as much as 8.6~12.0%. Consequently, to improve carbonation resistance, polymer waterproof agent was more effective than water-repellent agent. In particular, epoxy showed the most outstanding performance.

The Nonlinear Finite Element Analysis of Reinforced Lightweight Concrete Beam (경량콘크리트 보의 비선형 유한요소해석)

  • 이호경;곽윤근
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.3
    • /
    • pp.219-226
    • /
    • 1998
  • 본 연구에서는 경량콘크리트보의 거동을 연구하는데 적용될 수 있는 비선형해석이 나타나있다. 콘크리트에 대한 2축 실험 자료를 사용하여 경량콘크리트의 구성모델을 만들었다. 구성모델에서 콘크리트의 비선형성은 주응력비에 따른 강도증감계수와 탄성계수의 변화에 따른 비선형저감계수를 사용하여 나타내었다. 유한요소 모델해석에서 콘크리트는 8절점을 가진 사각형요소로 하고 철근은 1차원 선형요소로 가정하여 해석하였다. 유한요소해석으로부터 얻어진 수치해석결과와 실험실에서 행한 실험결과를 비교하였다.

Physical Properties of Lightweight and Normal Weight Concretes due to Water-Cement Ratio Changes (물-시멘트비 변화에 따른 경량콘크리트와 일반콘크리트의 물리적 성질)

  • Lee, Chang-Soo;Kim, Jae-Nam;Lim, Youn;Ma, Moon-Hak
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.11-20
    • /
    • 2009
  • By using the artificial lightweight aggregate for the natural aggregate depletes and destruction of environment and the application of lightweight concrete in structure, the lightweight concrete is manufactured. The fundamental characteristics by the waterbinder ratio was evaluated. It is suggested the method to control of pre-absorbed water of the lightweight aggregate. Lightweight concrete with pre-absorbed aggregate has similar characteristics compared to normal weight concrete regardless of water-binder ratio. According to the water-binder ratio, the drying condition, and the rebar, the unit mass of the lightweight concrete showed the reduction of 14.6${\sim}$21.0% as the range of 1,668${\sim}$1,998 $kg/m^3$ in comparison to the normal weight concrete. The lightweight aggregate pre-absorbed water showed the deferent evaporation quantity according to the water-binder ratio. As the water-binder ratio is lower, the oven dry vapour water is larger, therefore the internal curing water is increasing. In the same water-binder, comparing the normal concrete the lightweight concrete shows lower compressive strength which is due to the different strength of an aggregate. In the air dry curing, the normal weight concrete has a lower strength improvement effect in w/c 0.3 than the ratio 0.4 and 0.5. However, the strength improvement effect has increasing as the water-binder ratio was low in the light concrete.

The Quality Properties of Self Consolidating Concrete Using Lightweight Aggregate (경량골재를 사용한 자기충전 콘크리트의 품질 특성)

  • Kim, Yong Jic;Choi, Yun Wang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.573-580
    • /
    • 2010
  • This paper presents the development of self-consolidating concrete (SCC) using lightweight aggregates. SCC using Lightweight aggregate properties have been evaluated in terms of flowability, segregation resistance and filling capacity of fresh concrete as per the standards of the Japanese Society of Civil Engineering (JSCE). The measurement of the mechanical properties of hardened SCC using lightweight aggregate, including compressive strength, splitting tensile strength, elastic moduli and density, as well as its dry shrinkage and carbonation properties were also carried out. The characteristics of SCC using lightweight aggregate at the fresh state showed that as the use of the lightweight aggregate, the flowability improves without exception of Mix No. 9 but the segregation resistance tends to decrease without exception of Mix No. 3, 4 and 5. The 28 days compressive strength of the SCC using lightweight aggregate was found to be 30 MPa or higher. The relationship between the compressive strength and the splitting tensile strength was found to be similar to the expression presented by CEB-FIP, and the relationship between the compressive strength and the elastic moduli was found to be similar to the expression suggested by ACI 318-08 which takes into consideration the density of concrete. The density of the SCC using lightweight aggregate decreased by up to 26% compared to that of the control SCC. Also, The dry shrinkage and carbonation depth of the SCC using lightweight aggregate increased compared to that of the control SCC.

Mechanical Properties of Alkali-Activated Slag-Based Concrete Using Lightweight Aggregates (경량골재를 사용한 알칼리 활성 슬래그 콘크리트의 역학적 특성)

  • Yang, Keun-Hyeok;Oh, Seung-Jin;Song, Jin-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.405-412
    • /
    • 2008
  • Six alkali-activated (AA) concrete mixes were tested to explore the significance and limitations of developing an environmental friendly concrete. Ground granulated blast-furnace slag and powder typed sodium silicate were selected as source material and an alkaline activator, respectively. The main parameter investigated was the replacement level of lightweight fine aggregate to the natural sand. Workability and mechanical properties of lightweight AA concrete were measured: the variation of slump with time, the rate of compressive strength development, the splitting tensile strength, the moduli of rupture and elasticity, the stress-strain relationship, the bond resistance and shrinkage strain. Test results showed that the compressive strength of lightweight AA concrete sharply decreased when the replacement level of lightweight fine aggregate exceeded 30%. In particular, the increase in the discontinuous grading of lightweight aggregate resulted in the deterioration of the mechanical properties of concrete tested. The measured properties of lightweight AA concrete were also compared, wherever possible, with the results obtained from the design equations specified in ACI 318-05 or EC 2, depending on the relevance, and the results predicted from the empirical equations proposed by Slate et al. for lightweight ordinary Portland cement concrete. The stress-strain curves of different concrete were compared with predictions obtained from the mathematical model proposed by Tasnimi. The measured mechanical properties of lightweight AA concrete generally showed little agreement with the predictions obtained from these equations.

Effect of Aggregate Size on the Shear Capacity of Lightweight Concrete Continuous Beams (경량콘크리트 연속보의 전단내력에 대한 골재크기의 영향)

  • Yang, Keun-Hyeok;Mun, Ju-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.669-677
    • /
    • 2009
  • Twenty-four beam specimens were tested to examine the effect of the maximum aggregate size on the shear behavior of lightweight concrete continuous beams. The maximum aggregate size varied from 4 mm to 19 mm and shear span-to-depth ratio was 2.5 and 0.6 in each all-lightweight, sand-lightweight and normal weight concrete groups. The ratio of the normalized shear capacity of lightweight concrete beams to that of the company normal weight concrete beams was also compared with the modification factor specified in ACI 318-05 for lightweight concrete. The microphotograph showed that some unsplitted aggregates were observed in the failure planes of lightweight concrete beams, which contributed to the enhancement of the shear capacity of lightweight concrete beams. As a result, the normalized shear capacity of lightweight concrete continuous beams increased with the increase of the maximum aggregate size, though the increasing rate was lower than that of normal weight concrete continuous beams. The modification factor specified in ACI 318-05 was generally unconservative in the continuous lightweight concrete beams, showing an increase of the unconservatism with the increase of the maximum aggregate size. In addition, the conservatism of the shear provisions of ACI 318-05 was lower in lightweight concrete beams than in normal weight concrete beams.

Wastewater Treatment using ALC (경량기포콘크리트를 이용한 폐수처리)

  • 홍영호;조석형;안태광;전용진
    • Proceedings of the KAIS Fall Conference
    • /
    • 2000.10a
    • /
    • pp.241-242
    • /
    • 2000
  • 본 연구는 폐수처리공정에서 경량기포콘크리트를 이용하여 폐수 중에 존재하는 음이온계면 활성제와 총인 그리고 총질소성분을 제거하기 위하여 실시되었다. 경량기포콘크리트는 폐수 처리공정에서 반응기에 충진하여 사용하였으며, 이때 사용된 폐수는 인공폐수(음이온계면활성제 : 10-31 mg/L, 총인 : 66-73 mg/L 그리고 총질소 : 56-163 mg/L)를 사용하였다. 실험결과 경량기포콘크리트를 사용하여 폐수를 처리한 결과 음이온계면활성제의 85-95 %, 총인성분의 92 %, 그리고 총질소 성분의 90 % 정도가 제거되었다.

The prediction for drying shrinkage of self-consolidating concrete using lightweight aggregate (경량골재를 사용한 자기충전 콘크리트의 건조수축률 예측)

  • Kim, Yong-Jic;Choi, Yun-Wang;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.341-344
    • /
    • 2008
  • Lightweight concrete is known for its advantage of reducing the self-weight of the structures, reducing the areas of sectional members as well as making the construction convenient. Thus the construction cost can be saved when applied to structures such as long-span bridge and high rise building. However, the lightweight concrete requires specific mix design method that is quite different from the typical concrete, since using the typical mix method would give rise the material segregation as well as lower the strength by the reduced weight of the aggregate. In order to avoid such problems, it is recommended to apply the mix design method of self-consolidating concrete for the lightweight concrete. Therefore experimental tests were performed as such mechanical properties(compressive strength, dry density and structural efficiency) of concrete and dry shrinkage according to ACI committee 209.

  • PDF

Relation Between Water Content Ratio and Fire Performance of Class 1 Structural Light Weight Aggregate Concrete (1종 경량골재콘크리트의 함수율과 내화특성)

  • Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.321-327
    • /
    • 2014
  • Structural light weight aggregate concrete are made with both coarse and fine light weight aggregates, but it is common with the high strength concrete to replace all or part with normal weight sand be called class 1 structural light weight aggregate concrete. Fire resistance of structural light weight aggregate concrete are determined by properties of high water content ratio and explosive spalling. Especially, structural light weight aggregate concrete is occurred serious fire performance deterioration by explosive spalling stem from thermal stress and water vapor pressure. This study is concerned with experimentally investigating fire resistance of class 1 structural light weight concrete. From the test result, class 1 structural light weight concrete is happened explosive spalling. The decrease of cross section caused by explosive spalling made sharp increasing gradient of inner temperature.