DOI QR코드

DOI QR Code

The Quality Properties of Self Consolidating Concrete Using Lightweight Aggregate

경량골재를 사용한 자기충전 콘크리트의 품질 특성

  • Received : 2010.06.14
  • Accepted : 2010.09.10
  • Published : 2010.12.31

Abstract

This paper presents the development of self-consolidating concrete (SCC) using lightweight aggregates. SCC using Lightweight aggregate properties have been evaluated in terms of flowability, segregation resistance and filling capacity of fresh concrete as per the standards of the Japanese Society of Civil Engineering (JSCE). The measurement of the mechanical properties of hardened SCC using lightweight aggregate, including compressive strength, splitting tensile strength, elastic moduli and density, as well as its dry shrinkage and carbonation properties were also carried out. The characteristics of SCC using lightweight aggregate at the fresh state showed that as the use of the lightweight aggregate, the flowability improves without exception of Mix No. 9 but the segregation resistance tends to decrease without exception of Mix No. 3, 4 and 5. The 28 days compressive strength of the SCC using lightweight aggregate was found to be 30 MPa or higher. The relationship between the compressive strength and the splitting tensile strength was found to be similar to the expression presented by CEB-FIP, and the relationship between the compressive strength and the elastic moduli was found to be similar to the expression suggested by ACI 318-08 which takes into consideration the density of concrete. The density of the SCC using lightweight aggregate decreased by up to 26% compared to that of the control SCC. Also, The dry shrinkage and carbonation depth of the SCC using lightweight aggregate increased compared to that of the control SCC.

본 연구에서는 자기충전 콘크리트의 배합설계 방법을 활용하여 경량골재콘크리트를 제조하였다. 경량골재를 사용한 자기충전 콘크리트의 평가는 굳지 않은 상태의 유동성, 재료분리저항성 및 충전성을 검토하였고, 성능평가 기준은 일본토목학회에서 제시하고 있는 성능평가 기준을 적용하였다. 또한 경량골재를 사용한 자기충전 콘크리트의 역학적 특성과 함께 건조수축 및 탄산화 특성을 검토하였다. 그 결과 경량골재를 사용한 자기충전 콘크리트의 유동성은 경량굵은골재와 경량잔골재를 동시에 100% 사용한 경우를 제외하고는 목표 성능기준을 만족하였으며, 재료분리저항성은 경량굵은골재 및 경량잔골재를 동시에 사용한 경우에 성능기준을 만족하였고, 충전성의 경우는 경량잔골재를 100% 사용한 경우를 제외하고는 성능기준을 만족하는 경향을 보였다. 경량골재를 사용한 자기충전 콘크리트의 재령 28일 압축강도의 경우 모든 배합에서 30 MPa 이상 발현 되었으며, 압축강도와 인장강도 및 탄성계수의 관계는 기존의 연구 경향과 유사하였다. 또한 자중감소 효과는 기준 콘크리트와 비교하여 최대 26% 감소하였다. 경량골재를 사용한 자기충전 콘크리트의 건조수축과 탄산화 특성은 기준콘크리트와 비교하여 다소 증가하는 경향을 나타내고 있었다.

Keywords

References

  1. 최성, 이광명, 정상화, 김주형(2009) 급속촉진 탄산화 시험을 통한 플라이애쉬 콘크리트의 탄산화 특성 연구, 한국콘크리트학회논문집, 한국콘크리트학회, Vol. 20, No. 4, pp. 449-455.
  2. 최연왕, 김용직, 최욱, 이상호, 조선규(2004) 경량 굵은골재 비중 및 혼합률에 따른 콘크리트의 자기충전성, 한국콘크리트학회 가을학술발표회논문집, 한국콘크리트학회, pp. 747-750.
  3. 최연왕, 정문영, 정지승, 문대중, 안성일(2002) 골재 채움율과 잔골재 용적비를 고려한 자기충전형 콘크리트의 최적배합, 한국콘크리트학회 가을학술발표회논문집, 한국콘크리트학회, pp. 549-554.
  4. 최연왕, 조선규, 최욱, 김경환, 안성일(2003) 간편 배합설계방법을 통한 중간강도 자기충전 콘크리트의 특성, 한국콘크리트학회 봄학술발표회논문집, 한국콘크리트학회, pp. 83-88.
  5. ACI Building Code 318M-08 (2008) Building code requirements for structure concrete and commentary, ACI Committee 318.
  6. Aitcin, P.C. (1998) High-Performance Concrete, E&FN Spon, London.
  7. CEB-FIP Model code (1993) Committee Euro-International du Beton(CEB-FIP), Thomas Telford, London.
  8. Chandra, S. and Berntsson, L. (2002) Lightweight Aggregate Concrete, Noyes, New York.
  9. Haque, M.N., AI-Khaiat, H., and Kayali, O. (2003) Strength and durability of lightweight concrete, Cement and Concrete Composites, Elsevier, Vol. 26, Issue 4, pp. 307-314.
  10. JSCE (1998) Japanese Society of Civil Engineering Guide to Construction of high FLowing Concrete, Gihoudou Pub., Tokyo.
  11. Kilic, A., Atis, C.D., Yasar, E., and Ozcan, F. (2003) High-strength lightweight concrete made with scoria aggregate containing mineral admixtures, Cement and Concrete Research, Vol. 33, Issue 10, pp. 1595-1599. https://doi.org/10.1016/S0008-8846(03)00131-5
  12. Kim, Y.J., Choi, Y.W., and Lacjemi, M. (2010) Characteristics of self-consolidating concrete using two types of lightweight coarse aggregates, Construction and Building Materials, Elsevier, Vol. 24, pp. 11-16. https://doi.org/10.1016/j.conbuildmat.2009.08.004
  13. Lo, T.Y. and Cui, H.Z. (2004) Effect of porous lightweight aggregate on strength of concrete, Materials Letters, Elsevier, Vol. 58, Issue 6, pp. 916-919. https://doi.org/10.1016/j.matlet.2003.07.036
  14. Lo, T.Y., Cui, H.Z., and Li, Z.G. (2004) Influence of aggregate prewetting and fly ash on mechanical properties of lightweight concrete, Waste Management, Elsevier, Vol. 24, Issue 4, pp. 333-338. https://doi.org/10.1016/j.wasman.2003.06.003
  15. Okamura, H. (1999) Self-compacting high performance concrete, Social System Institute, Tokyo.
  16. Okamura, H., Maekawa, K., and Ozawa, K. (1998) High performance concrete, Gihoudou Pub., Tokyo.
  17. Rossignolo, J.A. and Agnesini, M.V.C. (2002) Mechanical properties of polymer-modified lightweight aggregate concrete, Cement and Concrete Research, Elsevier, Vol. 32, Issue 9, pp. 329-334. https://doi.org/10.1016/S0008-8846(01)00678-0
  18. Rossignolo, J.A., Agnesini, M.V.C., and Morais, J.A. (2003) Properties of high-performance LWAC for precast structures with Brazilian lightweight aggregate, Cement and Concrete Composites, Elsevier, Vol. 25, Issue 1, pp. 77-82. https://doi.org/10.1016/S0958-9465(01)00046-4
  19. Su, N. and Miao, B. (2003) A new method for the mix design of medium strength flowing concrete with low cement content, Cement and Concrete Composite, Elsevier, Vol. 25, Issue 2, pp. 215-222. https://doi.org/10.1016/S0958-9465(02)00013-6
  20. Su, N., Hsu, K.C., and Chai , H.W. (2001) A simple mix design method for self-compacting concrete, Cement and Concrete Research, Elsevier, Vol. 31, Issue 12, pp. 1799-1807. https://doi.org/10.1016/S0008-8846(01)00566-X
  21. Turkmen, I. and Kantarci, A. (2007) Effect of expanded perlite aggregate and different curing conditions on the physical and mechanical properties of self compacting concrete, Build Environ, Elsevier, Vol. 42, pp. 2378-2383. https://doi.org/10.1016/j.buildenv.2006.06.002
  22. Yasar, E., Atis, C.D., Kilic, A., and Gulsen, H. (2003) Strength properties of lightweight concrete made with basaltic pumice and fly-ash, Materials Letters, Elsevier, Vol. 57, Issue 15, pp. 2267-2270. https://doi.org/10.1016/S0167-577X(03)00146-0