DOI QR코드

DOI QR Code

Mechanical Properties of Alkali-Activated Slag-Based Concrete Using Lightweight Aggregates

경량골재를 사용한 알칼리 활성 슬래그 콘크리트의 역학적 특성

  • Published : 2008.06.30

Abstract

Six alkali-activated (AA) concrete mixes were tested to explore the significance and limitations of developing an environmental friendly concrete. Ground granulated blast-furnace slag and powder typed sodium silicate were selected as source material and an alkaline activator, respectively. The main parameter investigated was the replacement level of lightweight fine aggregate to the natural sand. Workability and mechanical properties of lightweight AA concrete were measured: the variation of slump with time, the rate of compressive strength development, the splitting tensile strength, the moduli of rupture and elasticity, the stress-strain relationship, the bond resistance and shrinkage strain. Test results showed that the compressive strength of lightweight AA concrete sharply decreased when the replacement level of lightweight fine aggregate exceeded 30%. In particular, the increase in the discontinuous grading of lightweight aggregate resulted in the deterioration of the mechanical properties of concrete tested. The measured properties of lightweight AA concrete were also compared, wherever possible, with the results obtained from the design equations specified in ACI 318-05 or EC 2, depending on the relevance, and the results predicted from the empirical equations proposed by Slate et al. for lightweight ordinary Portland cement concrete. The stress-strain curves of different concrete were compared with predictions obtained from the mathematical model proposed by Tasnimi. The measured mechanical properties of lightweight AA concrete generally showed little agreement with the predictions obtained from these equations.

친환경 콘크리트 개발의 의미와 한계를 파악하기 위해 알칼리 활성 경량콘크리트 6배합이 실험되었다. 무시멘트 친환경 결합재를 생산하기 위해 고로슬래그와 분말형 규산나트륨이 각각 모재와 활성화제로 이용되었다. 최대직경 13 mm의 경량골재가 굵은골재로 이용되었으며, 최대직경 5 mm의 경량골재가 천연모래의 용적비로 0, 15, 30, 50, 75 및 100% 치환되었다. 굳지 않은 콘크리트에서는 시간경과에 따른 슬럼프 변화가 측정되었으며, 굳은 콘크리트에서는 재령에 따른 압축강도 발현속도, 할렬인장강도, 파괴계수, 탄성계수, 응력-변형률 관계, 부착강도 및 건조수축 변형률이 측정되었다. 실험된 알칼리 활성 경량콘크리트의 압축강도는 경량 잔골재 치환율이 30% 이상일 때 급격히 감소하였다. 특히 사용된 경량골재의 불연속 입도분포는 콘크리트의 역학적 특성들을 나쁘게 만들었다. 알칼리 활성 경량콘크리트의 역학적 특성들은 보통포틀랜드시멘트 경량콘크리트를 위해 제시된 ACI 318-05 및 EC 2 설계기준 또는 Slate 등의 제안모델들과 비교되었다. 또한 측정된 응력-변형률 관계는 보통포틀랜드시멘트 경량콘크리트의 실험 결과에 근거하여 제시된 Tasnimi의 모델과 비교되었다. 실험 결과와 각 제안 모델들과의 비교는 잘 일치하지 않았다.

Keywords

References

  1. Pacheco-Torgal, F., Castro-Gomes, J., and Jalali, S., "Alkali-Activated Binders: A Review. Part 2. About Materials and Binder Manufacture," Construction and Building Materials, March 2007, Vol. 22, No. 7, 2008, pp. 1305-1314 https://doi.org/10.1016/j.conbuildmat.2007.10.015
  2. Palomo, A., Grutzeck, M. W., and Blanco, M. T., "Alkali-Activated Fly Ashes: A Cement for the Future," Cement and Concrete Research, Vol. 29, 1999, pp. 1323-1329 https://doi.org/10.1016/S0008-8846(98)00243-9
  3. Wang, S. D., Pu, X, C., Scrivener, K. L., and Pratt, P. L., "Alkali-Activated Slag Cement and Concrete: A Review of Properties and Problems," Advanced Cement Research, Vol. 27, 1995, pp. 93-102
  4. Wang, S. D., Scrivener, K. L., and Pratt, P. L., "Factors Affecting the Strength of Alkali-Activated Slag," Cement and Concrete Research, Vol. 24, 1994, pp. 1033-1043 https://doi.org/10.1016/0008-8846(94)90026-4
  5. Yang, K. H., Song, J. K., Ashour, A. F., and Lee, E. T., "Properties of Cementless Mortar Activated by Sodium Silicate," Construction and Building Materials, July 2007, Vol. 22, No. 8, 2008, pp. 1981-1989 https://doi.org/10.1016/j.conbuildmat.2007.07.003
  6. Neville, A. M., Properties of Concrete, Longman, 1995
  7. Zhang, M. H. and Gjorv, O. E., "Characteristics of Lightweight Aggregates for High-Strength Concrete," ACI Materials Journal, Vol. 88, 1991, pp. 150-158
  8. Almusallam, T. H., and Alsayed, S. H., "Stress-Strain Relationship of Normal, High-Strength and Lightweight Concrete," Magazine of Concrete Research, Vol. 47, 1995, pp. 39-44 https://doi.org/10.1680/macr.1995.47.170.39
  9. Kim, Y. J., and Harmon, T. G., "Analytical Model for Confined Lightweight Aggregate Concrete," ACI Structural Journal, Vol. 103, 2006, pp. 263-270
  10. Mitchell, D. W. and Marzouk, H., "Bond Characteristics of High-Strength Lightweight Concrete," ACI Structural Journal, Vol. 104, 2007, pp. 22-29
  11. Slate, F. O., Nilson, A. H., and Martinez, S., "Mechanical Properties of High-Strength Lightweight Concrete," ACI Journal, Vol. 83, 1986, pp. 606-613
  12. Tasnimi, A. A., "Mathematical Model for Complete Stress-Strain Curve Prediction of Normal, Light-weight and High-Strength Concrete," Magazine of Concrete Research, Vol. 56, 2004, pp. 23-34 https://doi.org/10.1680/macr.56.1.23.36287
  13. ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-05) and Commentary (ACI 318R-05), American Concrete Institute, 2005
  14. The European Standard EN 1992-1-1:2004, Eurocode 2: Design of Concrete Structures, British Standards Institution, 2004
  15. 한국공업표준협회, KS 규준안, 한국공업표준협회, 2006
  16. 정헌수, 양근혁, 김현호, "순환골재 품질과 치환율이 콘크리트 역학적 특성에 미치는 영향," 대한건축학회논문집, 22권, 6호, 2006, pp. 71-78

Cited by

  1. Mechanical properties and water purification characteristics of natural jute fiber-reinforced non-cement alkali-activated porous vegetation blocks vol.12, pp.S1, 2014, https://doi.org/10.1007/s10333-014-0433-3
  2. An Experimental Study on the Time-Dependent Deformation of the Alkali Activated Slag Concrete vol.15, pp.5, 2015, https://doi.org/10.5345/JKIBC.2015.15.5.457
  3. Experimental Study on Rheological Properties of Alkali Activated Slag Pastes with Water to Binder Ratio vol.27, pp.5, 2015, https://doi.org/10.4334/JKCI.2015.27.5.511
  4. Lightweight Aggregate Concrete based on the Replacement Level of Natural Sand vol.28, pp.4, 2016, https://doi.org/10.4334/JKCI.2016.28.4.427
  5. Air Content, Workability and Bleeding Characteristics of Fresh Lightweight Aggregate Concrete vol.22, pp.4, 2010, https://doi.org/10.4334/JKCI.2010.22.4.559
  6. Influence of Specimen Geometries on the Compressive Strength of Lightweight Aggregate Concrete vol.24, pp.3, 2012, https://doi.org/10.4334/JKCI.2012.24.3.333
  7. Carbonation Characteristics of Alkali Activated Blast-Furnace Slag Mortar vol.24, pp.3, 2012, https://doi.org/10.4334/JKCI.2012.24.3.315
  8. Basic Research of Self Compacting Concrete Using Alkali-Activated Slag Binder vol.25, pp.6, 2013, https://doi.org/10.4334/JKCI.2013.25.6.657