• Title/Summary/Keyword: 경량 건축재료

Search Result 62, Processing Time 0.048 seconds

A Study on Thermal Conductivity of Inorganic Insulation Using Pearlite (펄라이트를 사용한 무기단열재의 열전도율 측정 연구)

  • Park, Jong-Pil;Jeon, Chan-Ki;Kim, Ju-Ho;Lee, Jae-Seong;Shim, Jae-Young
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2015.11a
    • /
    • pp.138-140
    • /
    • 2015
  • 건축물에서 단열재는 일정한 온도를 유지하도록 하려는 부분의 바깥쪽을 피복하여 외부로의 열손실이나 열의 유입을 적게 하기 위한 재료이다. 단열재는 소재(素材) 자체의 열전도율(熱傳導率)이 작은 것이 바람직하나, 대부분 열전도율이 그다지 작지 않다. 그러므로 대개의 경우 열전도율을 작게 하기 위해서 다공질(多孔質)이 되도록 만들어 기공(氣孔) 속의 공기의 단열성을 이용한다. 일반적으로 재료의 밀도가 크면 열전도율 값이 크게 되는 경향이 있다. 이에 본 연구에서는 경량골재인 펄라이트의 입자 크기별 열전도율을 측정하여 단열재로서 사용여부를 판단하고자 한다.

  • PDF

Strength and Density Properties according to mixing materials types of Non-cement light weight Panel core (무시멘트 경량패널 심재의 혼입재료 종류에 따른 유동 및 밀도, 흡수율 특성)

  • Sin, Jin-Hyun;Kim, Tae-Hyun;Lee, Dong-Hoon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.28-29
    • /
    • 2017
  • Recently, the tendency of the insulation of buildings to be important is making the buildings airtight. However, in order to get closer to the technology, it is necessary to improve the performance of walls and panels of buildings, but it is a problem due to the increase of the unit price. We will review the basic data on the density and table flow characteristics of high thermal insulation materials.

  • PDF

Physical Characteristics of ALC Controlled by Particle Size and Contents of Raw Materials (원료의 입도 및 함량제어에 따른 ALC의 물성 변화)

  • Jeong, Eui-Jong;Chu, Yong-Sik;Lee, Jong-Kyu;Song, Hun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.367-368
    • /
    • 2009
  • High-rise building in modern society is becoming increasingly necessary to reduce the weight of the building. Accordingly, increased use of lightweight bubble concrete is a trend Porous ceramics (ALC) is the most common, lightweight bubble concrete. And it is by lightweight blocks the same used as building materials. This research is related to the physical characteristics of ALC controlled by particle size and contents of raw materials.

  • PDF

Characteristics of the Load of Small Hard Body Used for Impact Resistance Test of the Lightweight Wall (경량벽체의 내충격성 시험에 사용되는 경질 충격체의 하중 특성)

  • Choi, Soo-Kyung;Song, Jung-Hyeon;Kim, Sang-Heon;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.4
    • /
    • pp.350-358
    • /
    • 2014
  • The demand for the lightweight wall has increased as the structure of the multi-unit dwelling has shift to the rahmen structure. The lightweight wall is required to secure certain degree of shock resistance for the structural safety. The study performed the load analysis test for 7 small hard bodies with different masses and shapes and 5 hard materials which applied the impact load on the wall. It was found out from the experiment that different pendulum weight doubled the load maximum even though the shock energy was the same. In addition, the study compared and analyzed the weight of materials and the load of small hard bodies to propose fundamental data for the material design of the lightweight wall.

Investigation on the Physical Properties of the Lightweight Mortar Made with Hydrogen Peroxide (과산화수소를 혼입한 경량기포 모르타르의 물리적 특성에 관한 연구)

  • Lee, Soo-Yong;Kim, Ji-Hyun;Lee, Jae-Yong;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.2
    • /
    • pp.117-123
    • /
    • 2018
  • The increase in energy efficiency has became a significantly important issue for building construction and maintenance. The energy efficiency is known to be achieved by using a material with lower thermal conductivity, and the best method is to increase the internal porosity of the material. Typical ways to increase internal porosity within cementitious composite are to use foaming agents or to use reactive powder such as aluminum. However, in this work, hydrogen peroxide was chosen as an alternative material to make lightweight cement mortar. The volume expansion of fresh cement mortar and unit weight, compressive strength and thermal conductivity of 28 day old cement mortar were measured. According to the experimental results, the incorporation of hydrogen peroxide increased internal porosity, and thereby reducing the compressive strength and thermal conductivities of cement mortar. It was found that hydrogen peroxide can be successfully used to produce lightweight mortar for thermal insulation purposes of buildings.

ITZ Analysis of Cement Matrix According to the Type of Lightweight Aggregate Using EIS (EIS를 활용한 경량골재 종류별 시멘트 경화체의 계면특성 분석)

  • Kim, Ho-Jin;Jung, Yoong-Hoon;Bae, Je-Hyun;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.498-505
    • /
    • 2020
  • Aggregate occupies about 70-85% of the concrete volume and is an important factor in reducing the drying shrinkage of concrete. However, when constructing high-rise buildings, it acts as a problem due to the high load of natural aggregates. If the load becomes large during the construction of a high-rise building, creep may occur and the ground may be eroded. Material costs increase and there are financial problems. In order to reduce the load on concrete, we are working to reduce the weight of aggregates. However, artificial lightweight aggregates affect the interface between the aggregate and the paste due to its higher absorption rate and lower adhesion strength than natural aggregates, affecting the overall strength of concrete. Therefore, in this study, in order to grasp the interface between natural aggregate and lightweight aggregate by type, we adopted a method of measuring electrical resistance using an EIS measuring device, which is a non-destructive test, and lightweight bone. The change in the state of the interface was tested on the outside of the material through a blast furnace slag coating. As a result of the experiment, it was confirmed that the electric resistance was about 90% lower than that in the air-dried state through the electrolyte immersion, and the electric resistance differs depending on the type of aggregate and the presence or absence of coating. As a result of the experiment, the difference in compressive strength depending on the type of aggregate and the presence or absence of coating was shown, and the difference in impedance value and phase angle for each type of lightweight aggregate was shown.

Properties of Fire Resistant Finishing Mortar Using Fly Ash and Glass Forming Light Weight Aggregate (플라이애시와 유리 발포 경량골재를 사용한 내화 마감모르타르의 특성)

  • Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.4
    • /
    • pp.374-381
    • /
    • 2015
  • This study is investigating the fire resistant finishing materials composed of fly ash and glass forming light weight aggregate has the high temperature thermal stability. High temperatures such as a fire, cementitious materials beget dehydration and micro crack of cement matrix. From the test result, developed fire resistant finishing materials showed good stability in high temperatures. These high temperature stability is caused by the ceramic binding and low thermal conductivity of glass forming light weight aggregate. Also, alkali activation reaction of fly ash and meta kaolin not showing the decomposition of calcium hydrates. Thus, this result indicates that it is possible to fire resistant finishing light weight mortars.

Fundamental Properties of Lightweight Concrete with Dry Bottom Ash as Fine Aggregate and Burned Artificial Lightweight Aggregate as Coarse Aggregate (건식 바텀애시 경량 잔골재와 소성 인공경량 굵은골재를 사용한 콘크리트의 기초 특성)

  • Choi, Hong-Beom;Kim, Jin-Man
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.267-274
    • /
    • 2018
  • Though the wet bottom ash has been used as a type of lightweight aggregate, dry bottom ash, new type bottom ash from coal combustion power plant, has scarcely researched. It is excellent lightweight aggregate in the view point of construction material. This study is performed to check the applicability of dry bottom ash as a fine aggregate in lightweight aggregate concrete, by analyzing various properties of fresh and hardened concrete. We get results that the slump of concrete is within the target range at less than 75% replacement rate of dry bottom ash, the air content is not affected by the replacement rate of dry bottom ash, the bleeding capacity is less than $0.025cm^3/cm^2$ at 75% under of the replacement rate of dry bottom ash, and the compressive strength of concrete show 90% or more comparing the base mix while initial strength development is a little low. Oven dry unit weight of concrete is reduced by 8.9% when replaced 100% dry bottom ash, and dry shrinkage tends to decrease depending on increase of replacement rate of dry bottom ash. Modulus of elasticity of concrete shows no decease at 50% over of the replacement rate of dry bottom ash, while modulus of elasticity of concrete decreases when the replacement rate increases further. The dry bottom ash, when used as a fine aggregate in lightweight concrete, can be used effectively without any deterioration in quality.

Research on simple measurement method of floor finishing materials to predict lightweight floor impact noise reduction performance in apartment houses (공동주택 경량 바닥충격음 저감성능 예측을 위한 바닥마감재 간이측정 방법 연구)

  • Min-Woo Kang;Yang-Ki Oh
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.594-602
    • /
    • 2023
  • To date, research on heavy floor impact noise has mainly been conducted. The reason is that in the case of lightweight floor impact noise, sufficient performance could be secured with only the floating floor structure and floor finishing materials. In the case of heavy floor impact noise in a floating floor structure, the reduction performance can be predicted to some extent by measuring the dynamic elasticity of the floor cushioning material. However, with the recent introduction of the post-measurement system, various floor structures are being developed. In particular, many non-floating floor structures that do not use cushioning materials are being developed. In floor structures where cushioning materials are not used, the finishing material will have a significant impact on lightweight floor impact noise. However, research on floor finishing materials is currently lacking. In this study, as a basic research on the development of various floor finishing materials for effective reduction of lightweight floor impact noise, various materials used as floor finishing materials for apartment complexes were selected, the sound insulation performance of lightweight floor impact noise was measured in an actual laboratory, and vibration characteristics were identified through simple experiments. The purpose was to confirm the predictability of light floor impact noise.

Patent Investigations and Analysis for the Curtain Wall System based on the Autoclaved Lightweight Concrete(ALC) (경량기포콘크리트 재료를 활용한 커튼월 구법에 관한 일본 특허기술의 분석 연구)

  • Kim, Young-Ho
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.12 no.1
    • /
    • pp.81-88
    • /
    • 2012
  • According to the survey results of the Ministry of Land, Transport and Maritime Affairs in the end of December 2011, the residential buildings was reported as 67.3% of 4,529,464 buildings. Reflected in the national energy policy, the residential building is expected that greater energy savings. To have realized the Passive House Project used the Autoclaved Lightweight Concrete(ALC) material on exterior wall, we take advantage of a very large energy savings. Therefore, this study investigate the patent documents of three major companies, SUMITOMO, CLION, ASAHI KASEI, in Japan. and analyze technical flow and benchmarking patent. As a result, the Sliding method or the Rocking method of ALC panels how to install is to be superior to high-performance drift and safety by a earthquake. And the embedded anchor in panel needs to improve the shape and the strength of bearing. Thus installation technology of the ALC exterior wall investigated in japanese patent documents is expected to the fastening units and anchors.