• Title/Summary/Keyword: 경기육괴

Search Result 112, Processing Time 0.02 seconds

충남지역 경기육괴에 분포하는 서산층군에 대한 자기특성 연구

  • 김완수;석동우;도성재
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.254-257
    • /
    • 2003
  • 한반도에 대한 고지자기 연구는 유라시아 대륙의 지구조운동이 진행되었던 중생대 및 고생대암석에 대해 여러 사람들에 의해 활발히 수행되어왔다. 특히 1980년대 후반부터는 북중국지괴와 남중국지괴 사이의 충돌대인 친링-다비-수루 (Qinling-Dabie-Sulu) 조산대가 서해를 지나 한반도로 연장될 가능성에 대한 관심이 높아지고 있다. 한반도의 중부를 가로지르는 옥천대는 경기육괴와 영남육괴의 경제부로서 변성시기가 초기 Triassic으로 보고되고 있으며, 경기육괴 북부 휴전선 인접지역의 동서방향의 주향을 갖는 습곡-단층대인 임진강대는 남북 경계에 대한 정확한 정의는 성립되어있지는 않지만 Triassic에 광역변성작용을 받았다는 보고가 있으나, 이들 임진강대와 옥천대의 성인에 대한 논란은 현재에 이르기까지 계속되고 있다. (중략)

  • PDF

Geochemical Comparison Study on the Amphibolite in the Central Gyeonggi massif and Southeastern Okcheon metamorphic belt (중부 경기육괴와 동남부 옥천변성대의 각섬암에 대한 지화학적 비교 연구)

  • Na Ki Chang;Cheong Won Seok
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.201-213
    • /
    • 2004
  • The Precambrian amphibolites in the central Gyeonggi massif, Yangsuri, Gyeonggido and southeastern Okcheon metamophic belt, Mungyeonggun, Gyeongsangbukdo, Korea, were studied on the geochemical characteristics of major and trace elements, and discussed petrogenetically and geotectonically. The characteristics of major elements of the amphibolites in these study areas are igeous origin such as tholeiitic-, subalkaline and alkaline basalt. Geotectonic distinction diagrams of trace elements such as Ti-Zr-Y and Zr-Nb-Y show basaltic igneous activity of island arc and mid ocean ridge environment at central Gyunggi massif, and within plate environment at southeastern Okcheon metamorphic belt. This result shows that genetic environments of study areas are different. Especially, origin of amphibolites in central Gyeonggi massif is similar with that of western Gyeonggi massif but different with the amphibolites of Chuncheon area. Genetic environment estimated of fractional crystallization of plagioclase has no particular effect on the origin of magma because value of LREE is higher than that of HREE and Eu anomaly definitely don't be exposed.

SHRIMP U-Pb Ages of the Yongyudo biotite Granites (용유도 흑운모화강암의 SHRIMP U-Pb 연령)

  • Kim, Dong-Yeon;Choi, Sung-Ja
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.393-403
    • /
    • 2014
  • U-Pb ages were determined from the Yongyudo biotite granites from western parts of Gyeonggi massif. The results show that the emplacement age of the Yongyudo biotite granite is ca. 227-230 Ma. Such age result that is somewhat older than previous reported ages, suggesting further investigations for the timing and evolution of the Jurassic granites of the western Gyeonggi massif.

Review of Radiometric Ages for Phanerozoic Granitoids in Southern Korean Peninsula (남한 지역 현생 화강암류의 연대측정 결과 정리)

  • Cheong, Chang-Sik;Kim, Nam-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.173-192
    • /
    • 2012
  • Previous age data were reviewed for 98 sites of Phanerozoic granitoids in the southern part of the Korean Peninsula. Subduction-related granitic magmatism has occurred in southeastern Korea since Early Permian. In the middle part of the Yeongnam massif, arc-related tonalites, trondhjemites, granodiorites, and monzonites were emplaced during Early Triassic. After Middle Triassic continental collision in central Korean Peninsula, post-collisional shoshonitic and high-K series and A-type granitoids were emplaced in the southwestern Gyeonggi massif and central Okcheon belt during Late Triassic. Early Jurassic calc-alkaline granitoids are mostly distributed in the middle part of the Yeongnam massif and Mt. Seorak area, northeastern Gyeonggi massif. On the other hand, Middle Jurassic calc-alkaline granitoids pervasively occur in the Okcheon belt and central Gyeonggi massif. This selective distribution could be attributed to the change in the position of trench, subduction angle, or the direction of subduction. Most Cretaceous and Paleogene granitoids are distributed in the Gyeongsang basin, with the latter emplaced exclusively along the eastern coastline. Outside the Gyeongsang basin, Cretaceous granitoids emplaced in relatively shallow depth occur in the Gyeonggi massif and central Okcheon belt.

Zircon U-Pb and Rare Earth Elements Analyses on Banded Gneiss in Euiam Gneiss Complex, Central Gyeonggi Massif: Consideration for the Timing of Depositional Event and Metamorphism of the Basement Rocks in the Gyeonggi Massif (경기육괴 중부 의암 편마암 복합체 호상편마암의 저어콘 U-Pb 연령과 미량원소: 경기육괴 기반암의 퇴적 시기와 변성작용에 대한 고찰)

  • Lee, Byung Choon;Cho, Deung-Lyong
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.215-233
    • /
    • 2022
  • The zircon U-Pb and trace element analyses were performed for banded gneiss in the Euiam gneiss complex, central Gyeonggi Massif. An age of detrital zircon shows predominant age peaks at ca. 2500-2480 Ma with numerous ages ranging from Siderian to Rhyacian period. The youngest age peak of detrital zircon constrains the maximum deposition age of protolith of banded gneiss at ca. 2070 Ma. Meanwhile, the zircon rim yielded metamorphic age of ca. 1966 ± 39 Ma ~ 1918 ± 13 Ma. Based on the error range, degree of discordancy, and value of mean squared weighted deviation, we considered that the age of 1918 ± 13 Ma is the most reasonable age indicating the timing of metamorphism for banded gneiss. The zircon rims yield Ti-in-zircon crystallization temperature of 690-740℃. Therefore, we suggested that there was a high-grade metamorphic event in the Gyeonggi Massif at ca. 1918 Ma which is older than the metamorphic event that occurred in the Gyeonggi Massif during ca. 1880-1860 Ma.

The tectonic evolution of South Korea and Northeast Asia from Paleoproterozoic to Triassic (원생대 이후 트라이아스기까지의 남한과 동북아시아의 지구조 진화)

  • Oh, Chang-Whan
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.59-87
    • /
    • 2012
  • Recent studies reveal that eclogite formed in the Hongseong area and post collision igneous rocks occurred throughout the Gyeonggi Massif during the Triassic Songrim Orogeny. These new findings derive the tectonic model in which the Triassic Qinling-Dabie-Sulu collision belt between the North and South China blocks extends into the Hongseong-Yangpyeong-Odesan collision belt in Korea. The belt may be further extended into the late Paleozoic subduction complex in the Yanji belt in North Korea through the Paleozoic subduction complex in the inner part of SW Japan. The collision belt divides the Gyeonggi Massif into two parts; the northern and southern parts can be correlated to the North and South China blocks, respectively. The collision had started from Korea at ca. 250 Ma and propagated to China. The collision completed during late Triassic. The metamorphic conditions systematically change along the collision belt:. ultrahigh temperature metamorphism occurred in the Odesan area at 245-230Ma, high-pressure metamorphism in the Hongseong area at 230 Ma and ultra high-pressure metamorphism in the Dabie and Sulu belts. This systematic change may be due to the increase in the depth of slab break-off towards west, which might be related to the increase of the amounts of subducted ocecnic slab towards west. The wide distribution of Permo-Triassic arc-related granitoids in the Yeongnam Massif and in the southern part of the South China block indicate the Permo-Triassic subduction along the southern boundary of the South China block which may be caused by the Permo-Triassic collision between the North and South China blocks. These studies suggest that the Songrim orogeny constructed the Korean Peninsula by continent collision and caused the subduction along the southern margin of the Yeongnam Massif. Both the northern and southern Gyeonggi Massifs had undergone 1870-1840 Ma igneous and metamorphic activities due to continent collision and subduction related to the amalgamation of Colombia Supercontinent. The Okcheon metamorphic belt can be correlated to the Nanhua rift formed at 760 Ma within the South China blocks. In that case, the southern Gyeonggi Massif and Yeongnam Massif can be correlated to the Yangtz and Cathaysia blocks in the South China block, respectively. Recently possible Devonian or late Paleozoic sediments are recognized within the Gyeonggi Massif by finding of Silurian and Devonian detrital zircons. Together with the Devonian metamorphism in the Hongseong and Kwangcheon areas, the possible middle Paleozoic sediments indicate an active tectonic activity within the Gyeonggi Massif during middle Paleozoic before the Permo-Triassic collision.

SHRIMP U-Pb Age Determination for the Gneissic Country Rocks Around the Hongcheon Iron-REE Depsosit (홍천 철-희토류 광상의 편마암질 주변암에 대한 SHRIMP U-Pb 연령측정)

  • Kim, Myoung-Jung;Park, Kye-Hun;Koh, Sang Mo;Yi, Keewook
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.299-305
    • /
    • 2013
  • It is well known that the Hongcheon iron-rare earth deposit is composed of carbonatite-phoscorite complex. We conducted zircon U-Pb age determination for the gneissic country rocks of this deposit. As the result we obtained ca. 1830 Ma, which is somewhat younger than igneous and metamorphic ages of ca. 1870 Ma generally reported from the Gyeonggi massif, suggesting further investigations for the timing and evolution of the Paleoproterozoic activities of the Gyeonggi massif.

Geochemistry of Precambrian Metamorphic Rocks from Yongin-Anseong Area, the Southernmost Part of Central Gyeonggi Massif (경기육괴 중부 남단(용인-안성지역)에 분포하는 선캠브리아기 변성암류의 지구화학적 특징)

  • 이승구;송용선;증전창정
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.142-151
    • /
    • 2004
  • The metamorphic rocks of Yongin-Anseong area in Gyeonggi massif are composed of high-grade gneisses and schists which are considered as Precambrian basement, and Jurassic granite which intruded the metamorphic rocks. In this paper, we discuss the geochemical characteristics of metamorphic rocks and granites in this area based on REE and Nd isotope geochemistry. And we also discuss the petrogenetic relationship between metamorphic rocks and granites in this area. Most of Nd model ages (T$\_$DM/$\^$Nd/) from the metamorphic rocks range ca. 2.6Ga~2.9Ga which are correspond to the main crustal formation stage in Gyeonggi massif by Lee et. al. (2003). And Nd model ages show that the source material of quartzofeldspathic gneiss is slightly older than that of biotite banded gneiss. In chondrite-normalized rare earth element pattern, the range of (La/Yb)$\_$N/ value from biotite banded gneiss is 37~136, which shows sharp gradient and suggests that biotite banded gneiss was originated from a strongly fractionated source material. However, that of amphibolite is 4.65~6.64, which shows nearly flattened pattern. Particularly, the chondrite normalized REE patterns from the high-grade metamorphic rocks show the REE geochemisoy of original source material before metamorphism. In addition, the values of (La/Yb)$\_$N/ and Nd model ages of granite are 32~40 and 1.69Ga~2.08Ga, respectively, which suggest that the source material of granite is different from that of Precambrian basement such as biotite banded gneiss and quartzofeldspthic gneiss in the area.

SHRIMP Zircon Ages of the Basement Gneiss Complex in the Pyeongchang-Wonju Area, Gyeonggi Massif, Korea (명창-원주 지역의 경기육괴 기반암 편마암 복합체에 대한 SHRIMP 저어콘 연대 측정)

  • Song, Yong-Sun;Park, Kye-Hun;Seo, Jae-Hyeon;Jo, Hui-Je;Yi, Kee-Wook
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.99-114
    • /
    • 2011
  • Precambrian gneiss complex in the Pyeongchang-Wonju area, which lies west of the Paleozoic sedimentary basin of the Yeongwol-Taebaek area, is being considered as a part of the Gyeonggi massif, but its ages of formation and metamorphic events are not well defined yet. In this study, SHRIMP zircon U-Pb ages were determined from the gneiss complex in the area, We obtained the discrete ages of magmatic (ca. 1960 Ma) and metamorphic (ca. 1860 Ma) events through the interpretation of the SHRIMP data based on the internal structures of zircons. These are almost the same to the ages of main intrusion and metamorphism reported from the Precambrian basements of Gyeonggi, Yeongnam and Nangnim massifs of the Korean Peninsula, Ages of 3200~3300 Ma, 2900 Ma, 2660 Ma, 2430 Ma, 2260 Ma, and 2080~2070 Ma obtained from inherited cores of studied zircons are also very similar to the frequently reported ages from the basement rocks of the Gyeonggi and Yeongnam massifs, Lower intercept age of about 270 Ma calculated from the rim data seems to indicate that the study area suffered from a late Paleozoic metamorphism (Okcheon Orogeny), but we need more reasonable and sufficient data to confirm it. According to the results of this study, it is suggested that the Bangnim group unconformably overlying the gneiss complex was deposited after the Paleoproterozoic granitic magmatism (ca. 1960 Ma) and metamorphism (ca. 1860 Ma).