DOI QR코드

DOI QR Code

SHRIMP Zircon Ages of the Basement Gneiss Complex in the Pyeongchang-Wonju Area, Gyeonggi Massif, Korea

명창-원주 지역의 경기육괴 기반암 편마암 복합체에 대한 SHRIMP 저어콘 연대 측정

  • Song, Yong-Sun (Department of Earth Environmental Sciences of Pukyong National University) ;
  • Park, Kye-Hun (Department of Earth Environmental Sciences of Pukyong National University) ;
  • Seo, Jae-Hyeon (Department of Earth Environmental Sciences of Pukyong National University) ;
  • Jo, Hui-Je (Department of Earth Environmental Sciences of Pukyong National University) ;
  • Yi, Kee-Wook (Korea Basic Science institute)
  • 송용선 (부경대학교 지구환경학과) ;
  • 박계헌 (부경대학교 지구환경학과) ;
  • 서재현 (부경대학교 지구환경학과) ;
  • 조희재 (부경대학교 지구환경학과) ;
  • 이기욱 (한국기초과학지원연구원)
  • Received : 2011.05.19
  • Accepted : 2011.06.20
  • Published : 2011.06.30

Abstract

Precambrian gneiss complex in the Pyeongchang-Wonju area, which lies west of the Paleozoic sedimentary basin of the Yeongwol-Taebaek area, is being considered as a part of the Gyeonggi massif, but its ages of formation and metamorphic events are not well defined yet. In this study, SHRIMP zircon U-Pb ages were determined from the gneiss complex in the area, We obtained the discrete ages of magmatic (ca. 1960 Ma) and metamorphic (ca. 1860 Ma) events through the interpretation of the SHRIMP data based on the internal structures of zircons. These are almost the same to the ages of main intrusion and metamorphism reported from the Precambrian basements of Gyeonggi, Yeongnam and Nangnim massifs of the Korean Peninsula, Ages of 3200~3300 Ma, 2900 Ma, 2660 Ma, 2430 Ma, 2260 Ma, and 2080~2070 Ma obtained from inherited cores of studied zircons are also very similar to the frequently reported ages from the basement rocks of the Gyeonggi and Yeongnam massifs, Lower intercept age of about 270 Ma calculated from the rim data seems to indicate that the study area suffered from a late Paleozoic metamorphism (Okcheon Orogeny), but we need more reasonable and sufficient data to confirm it. According to the results of this study, it is suggested that the Bangnim group unconformably overlying the gneiss complex was deposited after the Paleoproterozoic granitic magmatism (ca. 1960 Ma) and metamorphism (ca. 1860 Ma).

영남육괴에 발달한 영월-태백지역의 고생대 퇴적분지의 서쪽에 위치한 평창-원주 일대의 선캠브리아 편마암 복합체는 경기육괴의 일부로 간주되고 있으나 정확한 생성사기 및 변성시기에 대하여는 잘 연구되지 않았다. 이 연구에서는 이 지역의 편마암 복합체에 대한 SHRIMP 저어콘 U-Pb 연대측정을 수행하였다. 분석 자료들을 저어콘의 내부 구조 특성과 연관지어 해석한 결과 약 1960 Ma의 화성연대와 약 1860Ma의 변성연대를 구분하여 구하였다. 이 연대들은 지금까지 한반도에서 보고된 경기육괴, 영남육괴, 낭림육괴 등의 선캠브리아 화강편마암류들의 주 관입시기 빛 주 변성작용의 시기와 일치한다. 저어콘의 상속핵에서 얻어진 3200~3300, 2900, 2660, 2430, 2260, 2080~2070 Ma 등의 연령 역시 경기육괴 또는 영남육괴 기반암류에서 자주 보고되고 있는 연대들과 유사하다. 변성주변부에서는 고생대 후기의 변성작용(옥천조산운동)으로 해석될 수 있는 270Ma 부근의 하부교점 연대를 구하였지만 이를 확인하기 위해서는 더 적절하고 충분한 자료가 요구된다. 이 연구의 연대측정 결과는 편마암 복합체위에 부정합으로 놓이는 방림층군의 시대는 고원생대 화성활동(약1960 Ma)과 변성작용(약 1860 Ma) 이후임을 지시하고 있다.

Keywords

Acknowledgement

Supported by : 부경대학교

References

  1. 김기완, 박봉순, 이홍규, 1969, 1 : 50,000 제천도폭 지질 보고서, 국립지질조사소.
  2. 김남훈, 송용선, 박계헌, 이호선, 2009, 영남(소백산)육괴 북 동부 평해지역 화강편마암류의 SHRIMP U-Pb 저콘 연대. 암석학회지, 18, 31-47.
  3. 김유홍, 기원서, 진광민, 2010, 옥천대와 경기육괴의 경계부, 주천 지역의 지질구조. 자원환경지질, 43, 647-648.
  4. 김정찬, 고희재, 이승렬, 이창범, 최성자, 박기화, 2001, 1:250,000 강릉-속초 지질도폭 설명서. 한국지질자원연구원, 76p.
  5. 김정환, 손영철, 고희재, 1999, 평창지역에서 소위 방림단층의 특성과 주변지역의 지질구조. 지질학회지, 35, 99- 116.
  6. 김정환, 정창식, 손영철, 고희재, 1997, 평창지역의 지질과 선캠브리아 화강암질암의 스트론튬, 니오디미움 및 납동위원소 조성. 지질학회지, 33, 27-35.
  7. 박계헌, 송용선, 박맹언, 이승구, 류호정, 2000, 동북아시아 지역 선캠브리아 지괴에 대한 암석학, 지구화학 및 지구 연대학적 연구: 1. 지리산 지역 변성암의 변성연대. 암석학회지, 9, 29-39.
  8. 박계헌, 정창식, 이광식, 장호완, 1993, 태백산지역의 고기 화강암 및 화강편마암류에 대한 납 동위원소 연구. 지질학회지, 29, 387-395
  9. 박노영, 오민수, 서정률, 김재형, 1978, 평창서부지역 지질광상 및 물리탐사. KIGAM Bulletin-03, 자원개발연구소, 59p.
  10. 손치무, 정지곤, 1971, 평창 북서부의 지질. 지질학회지, 7, 143-152.
  11. 원종관, 유환수, 이윤종, 김정진, 1974, 1 : 50,000 신림도폭 지질보고서., 국립지질광물연구소, 28p.
  12. 이대성, 나기창, 김용준, 1985, 옥천대의 지질 및 광물자원 에 관한 연구 - 평창-제천간에 분포하는 옥천대 하부와 기반의 암상 및 화성 관입체의 암질에 대한 연구. 광산지질, 18. 381-397.
  13. 이호선, 박계헌, 송용선, 김남훈, 2010, 영남육괴 북동부 홍제사 화강암의 LA-ICP-MS U-Pb 저콘 연대. 암석학회지, 19, 103-108.
  14. 정창희, 이돈영, 유양수, 강기우, 1979, 1 : 50,000 평창. 영월도폭 지질보고서. 자원개발연구소, 19p.
  15. 주승환, 지세정, 1989, 평창-문경일원에 분포하는 화강암체의 Rb/Sr 연령측정 연구. 동위원소지질연구 KR-89-1C, 한국동력자원연구소, 5-61.
  16. 지정만, 윤선, 이창진, 1989, 1 : 50,000 문막도폭 지질보고서. 한국동력자원연구소
  17. Chang, H.-W., Turek, A. and Kim, C.-B., 2003, U-Pb zircon geochronology and Sm-Nd isotopic constraint for Precambrian plutonic rocks in the northeastern part of Ryeongnam massif, Korea. Geochemical Journal, 37, 471-491. https://doi.org/10.2343/geochemj.37.471
  18. Cheong, C.S., Jeong, G.Y., Kim, H., Lee, S.H., Choi, M.S., and Cho, M., 2003, Early Permian peak metamorphism recorded in U-Pb system of black slates from the Ogcheon metamorphic belt, South Korea, and its tectonic implication. Chemical Geology, 193, 81-92. https://doi.org/10.1016/S0009-2541(02)00227-9
  19. Cheong, C.-S., Kwon, S.-T., and Park, K.-H., 2000, Pb and Nd isotopic constraints on Paleoproterozoic crustal evolution of the northeastern Yeongnam massif, South Korea. Precambrian Research, 102, 207-220. https://doi.org/10.1016/S0301-9268(00)00066-8
  20. Chough, S.K., Kwon, S.-T., Ree, J.-H. and Choi, D.K. 2000, Tectonic and sedimentary evolution of the Korean peninsula: a review and new view. Earth-Science Review, 52, 175-235.
  21. Claesson, S., Vetrin, V., Bayannova, T., and Downes, H., 2000, U-Pb zircon ages from a Devonian carbonatite dyke, Kola Peninsula, Russia: a record of geological evolution from the Archaean to the Palaeozoic. Lithos, 51, 95-108. https://doi.org/10.1016/S0024-4937(99)00076-6
  22. Claoue-Long, J.C., Compston, W., Roberts, J., and Fanning, C.M., 1995, Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analysis. In: Berggren, W.A., Kent, D.V., Aubrey, M.P. and Hardenbol, J. (eds.), Geochronology Time Scales and Global Stratigraphic Correlation, SEPM (Society for Sedimentary Geology) Special Publication, vol. 54, 3-21.
  23. Horie K, Tsutsumi Y, Kim H, Cho M, Hidaka H, Terada K, 2009, A U-Pb geochronological study of migmatitic gneiss in the Busan gneiss complex, Gyeonggi massif, Korea. Geosciences Journal, 13, 205-215. https://doi.org/10.1007/s12303-009-0021-5
  24. Hoskin, P.W.O. and Black, L.P., 2000, Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Jour. Metamor. Geol., 18, 423-439.
  25. Hoskin, P.W.O. and Schaltegger, U., 2003, The Composition of Zircon and Igneous and Metamorphic Petrogenesis. In: Hanchar, J.M. and Hoskin, P.W.O. (eds.), Zircon: Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, 53, 27-62.
  26. Hukasawa, T., 1943, Geology of Heisho District, Kogendo, Tyosen. Journal of the Geological Society of Japan, 50, 29-43. (in Japanese) https://doi.org/10.5575/geosoc.50.29
  27. Ireland, T.R. and Williams, I.S., 2003, Considerations in zircon geochronology by SIMS. In: Hanchar, J.M. and Hoskin, P.W.O. (eds.), Zircon: Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, 53, 215-241.
  28. Kim, C.B., Turek, A., Chang, H.W., Park, Y.S. and Ahn, K.S., 1999. U-Pb zircon ages for Precambrian and Mesozoic plutonic rocks in the Seoul-Cheongju-Chooncheon area, Gyeonggi massif, Korea. Geochemical Journal, 33, 379-397. https://doi.org/10.2343/geochemj.33.379
  29. Kobayashi, T., 1953, The Cambro-Ordovician formations and the faunas of South Korea. part IV, Geology of South Korea with special reference to the Limestone Plateau of Kogendo. Jour. Fac. Sci. (Univ. Tokyo), Section II, 8, 145-293.
  30. Lee, S.M., Kim, H.S., Hong, S.T. and Park, C.S., 1990, Petrologic studies on the metamorphic rocks in Wonju- Pyongchang area. Jour. Geol. Soc. Korea, 26, 32-52.
  31. Lee, S.R., Cho, M., Yi, K., and Stern, R.A., 2000, Early Proterozoic granulites in central Korea: tectonic correlation with Chinese cratons. The Journal of Geology, 108, 729-738. https://doi.org/10.1086/317951
  32. Ludwig, K.R., 2008. SQUID 2: A User's Manual. Berkeley, CA, Berkeley Geochronology Center Special Publication, No 2, 100p.
  33. Ludwig, K.R., 2003. User's Manual for Isoplot/EX Version 3.00. A Geochronological Toolkit for Microsoft Excel, vol. 4. Berkeley Geochronology Center Special Publication. 71p.
  34. Paces, J.B. and Miller, J.D., 1993, Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: geochronological insights to physical, petrogenetic, paleomagnetic and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. Journal of Geophysical Research, 98, 13997-14013. https://doi.org/10.1029/93JB01159
  35. Rubatto, D., 2002, Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184, 123-138. https://doi.org/10.1016/S0009-2541(01)00355-2
  36. Rubatto, D., Williams, I.S., and Buick, I.S., 2001, Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contrib. Mineral. Petrol., 140, 458-468. https://doi.org/10.1007/PL00007673
  37. Sagong, H. and Kwon, S.T., 1998, Pb-Pb age and uplift history of the Busan gneiss complex in the Okchon Belt, Korea: a comparison with the Bagdalryeong gneiss complex in the Kyongki Massif. Geosciences Journal, 2, 99- 106. https://doi.org/10.1007/BF02910488
  38. Sagong, H., Cheong, C.-S., and Kwon, S.-T., 2003, Paleoproterozoic orogeny in South Korea: evidence from Sm- Nd and Pb step-leaching garnet ages of Precambrian basement rocks. Precambrian Research, 122, 275-295. https://doi.org/10.1016/S0301-9268(02)00215-2
  39. Turek, A. and Kim, C.-B., 1996, U-Pb zircon ages for Precambrian rocks in southwestern Ryeongnam and southwestern Gyeonggi massifs, Korea. Geochemical Journal, 30, 231-249. https://doi.org/10.2343/geochemj.30.231
  40. Williams, Ian S. 1998. U-Th-Pb Geochronology by Ion Microprobe. In McKibben, M. A., Shanks III, W. C., and Ridley, W. I. (eds.): Applications of microanalytical techniques to understanding mineralizing processes. Reviews in Economic Geology, 7, 1-35. https://doi.org/10.1080/07474938808800138
  41. Zhao, G., Cao, L., Wilde, S.A., Sun, M., Choe, W.J., and Li, S., 2006, Implications based on the first SHRIMP U-Pb zircon dating on Precambrian granitoid rocks in North Korea. Earth and Planetary Science Letters, 251, 365-379. https://doi.org/10.1016/j.epsl.2006.09.021

Cited by

  1. Tectonic linkage between the Korean Peninsula and mainland Asia in the Cambrian: Insights from U–Pb dating of detrital zircon vol.368, 2013, https://doi.org/10.1016/j.epsl.2013.03.003
  2. Gwangju Shear Zone : Is it the Tectonic Boundary between the Yeongnam Massif and Okcheon Metamorphic Belt? vol.23, pp.1, 2014, https://doi.org/10.7854/JPSK.2014.23.1.017
  3. Recognition of the Phanerozoic “Young granite gneiss” in the central Yeongnam massif vol.19, pp.1, 2015, https://doi.org/10.1007/s12303-014-0025-7
  4. Permo-Triassic and Paleoproterozoic metamorphism related to continental collision in Yangpyeong, South Korea vol.216-217, 2015, https://doi.org/10.1016/j.lithos.2014.12.016
  5. Tectonic and deformation history of the Gyeonggi Massif in and around the Hongcheon area, and its implications in the tectonic evolution of the North China Craton vol.240, 2014, https://doi.org/10.1016/j.precamres.2013.10.016
  6. Paleoproterozoic magmatic and metamorphic events in the Hongcheon area, southern margin of the Northern Gyeonggi Massif in the Korean Peninsula, and their links to the Paleoproterozoic orogeny in the North China Craton vol.248, 2014, https://doi.org/10.1016/j.precamres.2014.04.003
  7. Arc magmatism in the Yeongnam massif, Korean Peninsula: Imprints of Columbia and Rodinia supercontinents vol.26, pp.3-4, 2014, https://doi.org/10.1016/j.gr.2013.08.020
  8. Geochemistry, zircon U–Pb ages, and Hf isotopic compositions of Precambrian gneisses in the Wonju–Jechon area of the southern Gyeonggi Massif: Implications for the Precambrian tectonic evolution of Korea and northeast Asia vol.283, 2016, https://doi.org/10.1016/j.precamres.2016.07.014
  9. Triassic mafic and intermediate magmatism associated with continental collision between the North and South China Cratons in the Korean Peninsula vol.246-247, 2016, https://doi.org/10.1016/j.lithos.2015.12.026
  10. Geology of the 2018 Winter Olympic site, Pyeongchang, Korea vol.60, pp.3, 2018, https://doi.org/10.1080/00206814.2017.1340196