Browse > Article
http://dx.doi.org/10.7854/JPSK.2011.20.2.099

SHRIMP Zircon Ages of the Basement Gneiss Complex in the Pyeongchang-Wonju Area, Gyeonggi Massif, Korea  

Song, Yong-Sun (Department of Earth Environmental Sciences of Pukyong National University)
Park, Kye-Hun (Department of Earth Environmental Sciences of Pukyong National University)
Seo, Jae-Hyeon (Department of Earth Environmental Sciences of Pukyong National University)
Jo, Hui-Je (Department of Earth Environmental Sciences of Pukyong National University)
Yi, Kee-Wook (Korea Basic Science institute)
Publication Information
The Journal of the Petrological Society of Korea / v.20, no.2, 2011 , pp. 99-114 More about this Journal
Abstract
Precambrian gneiss complex in the Pyeongchang-Wonju area, which lies west of the Paleozoic sedimentary basin of the Yeongwol-Taebaek area, is being considered as a part of the Gyeonggi massif, but its ages of formation and metamorphic events are not well defined yet. In this study, SHRIMP zircon U-Pb ages were determined from the gneiss complex in the area, We obtained the discrete ages of magmatic (ca. 1960 Ma) and metamorphic (ca. 1860 Ma) events through the interpretation of the SHRIMP data based on the internal structures of zircons. These are almost the same to the ages of main intrusion and metamorphism reported from the Precambrian basements of Gyeonggi, Yeongnam and Nangnim massifs of the Korean Peninsula, Ages of 3200~3300 Ma, 2900 Ma, 2660 Ma, 2430 Ma, 2260 Ma, and 2080~2070 Ma obtained from inherited cores of studied zircons are also very similar to the frequently reported ages from the basement rocks of the Gyeonggi and Yeongnam massifs, Lower intercept age of about 270 Ma calculated from the rim data seems to indicate that the study area suffered from a late Paleozoic metamorphism (Okcheon Orogeny), but we need more reasonable and sufficient data to confirm it. According to the results of this study, it is suggested that the Bangnim group unconformably overlying the gneiss complex was deposited after the Paleoproterozoic granitic magmatism (ca. 1960 Ma) and metamorphism (ca. 1860 Ma).
Keywords
SHRIMP U-Pb age; zircon; Gyeonggi Massif; Bakdallyeong Gneiss Complex, Bangnim Group; Migmatitic Gneiss; Granite Gneiss;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Williams, Ian S. 1998. U-Th-Pb Geochronology by Ion Microprobe. In McKibben, M. A., Shanks III, W. C., and Ridley, W. I. (eds.): Applications of microanalytical techniques to understanding mineralizing processes. Reviews in Economic Geology, 7, 1-35.   DOI   ScienceOn
2 Sagong, H. and Kwon, S.T., 1998, Pb-Pb age and uplift history of the Busan gneiss complex in the Okchon Belt, Korea: a comparison with the Bagdalryeong gneiss complex in the Kyongki Massif. Geosciences Journal, 2, 99- 106.   DOI
3 Sagong, H., Cheong, C.-S., and Kwon, S.-T., 2003, Paleoproterozoic orogeny in South Korea: evidence from Sm- Nd and Pb step-leaching garnet ages of Precambrian basement rocks. Precambrian Research, 122, 275-295.   DOI   ScienceOn
4 Turek, A. and Kim, C.-B., 1996, U-Pb zircon ages for Precambrian rocks in southwestern Ryeongnam and southwestern Gyeonggi massifs, Korea. Geochemical Journal, 30, 231-249.   DOI   ScienceOn
5 Rubatto, D., Williams, I.S., and Buick, I.S., 2001, Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contrib. Mineral. Petrol., 140, 458-468.   DOI   ScienceOn
6 Kobayashi, T., 1953, The Cambro-Ordovician formations and the faunas of South Korea. part IV, Geology of South Korea with special reference to the Limestone Plateau of Kogendo. Jour. Fac. Sci. (Univ. Tokyo), Section II, 8, 145-293.
7 Lee, S.M., Kim, H.S., Hong, S.T. and Park, C.S., 1990, Petrologic studies on the metamorphic rocks in Wonju- Pyongchang area. Jour. Geol. Soc. Korea, 26, 32-52.
8 Lee, S.R., Cho, M., Yi, K., and Stern, R.A., 2000, Early Proterozoic granulites in central Korea: tectonic correlation with Chinese cratons. The Journal of Geology, 108, 729-738.   DOI   ScienceOn
9 Ludwig, K.R., 2008. SQUID 2: A User's Manual. Berkeley, CA, Berkeley Geochronology Center Special Publication, No 2, 100p.
10 Kim, C.B., Turek, A., Chang, H.W., Park, Y.S. and Ahn, K.S., 1999. U-Pb zircon ages for Precambrian and Mesozoic plutonic rocks in the Seoul-Cheongju-Chooncheon area, Gyeonggi massif, Korea. Geochemical Journal, 33, 379-397.   DOI   ScienceOn
11 Chough, S.K., Kwon, S.-T., Ree, J.-H. and Choi, D.K. 2000, Tectonic and sedimentary evolution of the Korean peninsula: a review and new view. Earth-Science Review, 52, 175-235.
12 Claesson, S., Vetrin, V., Bayannova, T., and Downes, H., 2000, U-Pb zircon ages from a Devonian carbonatite dyke, Kola Peninsula, Russia: a record of geological evolution from the Archaean to the Palaeozoic. Lithos, 51, 95-108.   DOI   ScienceOn
13 Cheong, C.-S., Kwon, S.-T., and Park, K.-H., 2000, Pb and Nd isotopic constraints on Paleoproterozoic crustal evolution of the northeastern Yeongnam massif, South Korea. Precambrian Research, 102, 207-220.   DOI   ScienceOn
14 Claoue-Long, J.C., Compston, W., Roberts, J., and Fanning, C.M., 1995, Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analysis. In: Berggren, W.A., Kent, D.V., Aubrey, M.P. and Hardenbol, J. (eds.), Geochronology Time Scales and Global Stratigraphic Correlation, SEPM (Society for Sedimentary Geology) Special Publication, vol. 54, 3-21.
15 Horie K, Tsutsumi Y, Kim H, Cho M, Hidaka H, Terada K, 2009, A U-Pb geochronological study of migmatitic gneiss in the Busan gneiss complex, Gyeonggi massif, Korea. Geosciences Journal, 13, 205-215.   DOI   ScienceOn
16 지정만, 윤선, 이창진, 1989, 1 : 50,000 문막도폭 지질보고서. 한국동력자원연구소
17 Chang, H.-W., Turek, A. and Kim, C.-B., 2003, U-Pb zircon geochronology and Sm-Nd isotopic constraint for Precambrian plutonic rocks in the northeastern part of Ryeongnam massif, Korea. Geochemical Journal, 37, 471-491.   DOI   ScienceOn
18 Cheong, C.S., Jeong, G.Y., Kim, H., Lee, S.H., Choi, M.S., and Cho, M., 2003, Early Permian peak metamorphism recorded in U-Pb system of black slates from the Ogcheon metamorphic belt, South Korea, and its tectonic implication. Chemical Geology, 193, 81-92.   DOI   ScienceOn
19 박계헌, 정창식, 이광식, 장호완, 1993, 태백산지역의 고기 화강암 및 화강편마암류에 대한 납 동위원소 연구. 지질학회지, 29, 387-395
20 박노영, 오민수, 서정률, 김재형, 1978, 평창서부지역 지질광상 및 물리탐사. KIGAM Bulletin-03, 자원개발연구소, 59p.
21 손치무, 정지곤, 1971, 평창 북서부의 지질. 지질학회지, 7, 143-152.
22 원종관, 유환수, 이윤종, 김정진, 1974, 1 : 50,000 신림도폭 지질보고서., 국립지질광물연구소, 28p.
23 김정환, 정창식, 손영철, 고희재, 1997, 평창지역의 지질과 선캠브리아 화강암질암의 스트론튬, 니오디미움 및 납동위원소 조성. 지질학회지, 33, 27-35.
24 김유홍, 기원서, 진광민, 2010, 옥천대와 경기육괴의 경계부, 주천 지역의 지질구조. 자원환경지질, 43, 647-648.
25 김정찬, 고희재, 이승렬, 이창범, 최성자, 박기화, 2001, 1:250,000 강릉-속초 지질도폭 설명서. 한국지질자원연구원, 76p.
26 김정환, 손영철, 고희재, 1999, 평창지역에서 소위 방림단층의 특성과 주변지역의 지질구조. 지질학회지, 35, 99- 116.
27 박계헌, 송용선, 박맹언, 이승구, 류호정, 2000, 동북아시아 지역 선캠브리아 지괴에 대한 암석학, 지구화학 및 지구 연대학적 연구: 1. 지리산 지역 변성암의 변성연대. 암석학회지, 9, 29-39.
28 이호선, 박계헌, 송용선, 김남훈, 2010, 영남육괴 북동부 홍제사 화강암의 LA-ICP-MS U-Pb 저콘 연대. 암석학회지, 19, 103-108.
29 Zhao, G., Cao, L., Wilde, S.A., Sun, M., Choe, W.J., and Li, S., 2006, Implications based on the first SHRIMP U-Pb zircon dating on Precambrian granitoid rocks in North Korea. Earth and Planetary Science Letters, 251, 365-379.   DOI   ScienceOn
30 이대성, 나기창, 김용준, 1985, 옥천대의 지질 및 광물자원 에 관한 연구 - 평창-제천간에 분포하는 옥천대 하부와 기반의 암상 및 화성 관입체의 암질에 대한 연구. 광산지질, 18. 381-397.
31 정창희, 이돈영, 유양수, 강기우, 1979, 1 : 50,000 평창. 영월도폭 지질보고서. 자원개발연구소, 19p.
32 주승환, 지세정, 1989, 평창-문경일원에 분포하는 화강암체의 Rb/Sr 연령측정 연구. 동위원소지질연구 KR-89-1C, 한국동력자원연구소, 5-61.
33 김기완, 박봉순, 이홍규, 1969, 1 : 50,000 제천도폭 지질 보고서, 국립지질조사소.
34 김남훈, 송용선, 박계헌, 이호선, 2009, 영남(소백산)육괴 북 동부 평해지역 화강편마암류의 SHRIMP U-Pb 저콘 연대. 암석학회지, 18, 31-47.
35 Hukasawa, T., 1943, Geology of Heisho District, Kogendo, Tyosen. Journal of the Geological Society of Japan, 50, 29-43. (in Japanese)   DOI
36 Paces, J.B. and Miller, J.D., 1993, Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: geochronological insights to physical, petrogenetic, paleomagnetic and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. Journal of Geophysical Research, 98, 13997-14013.   DOI
37 Rubatto, D., 2002, Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184, 123-138.   DOI   ScienceOn
38 Ludwig, K.R., 2003. User's Manual for Isoplot/EX Version 3.00. A Geochronological Toolkit for Microsoft Excel, vol. 4. Berkeley Geochronology Center Special Publication. 71p.
39 Hoskin, P.W.O. and Black, L.P., 2000, Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Jour. Metamor. Geol., 18, 423-439.
40 Hoskin, P.W.O. and Schaltegger, U., 2003, The Composition of Zircon and Igneous and Metamorphic Petrogenesis. In: Hanchar, J.M. and Hoskin, P.W.O. (eds.), Zircon: Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, 53, 27-62.
41 Ireland, T.R. and Williams, I.S., 2003, Considerations in zircon geochronology by SIMS. In: Hanchar, J.M. and Hoskin, P.W.O. (eds.), Zircon: Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, 53, 215-241.