• Title/Summary/Keyword: 겹치기

Search Result 128, Processing Time 0.027 seconds

A study on vision seam tracking system at lap joints (겹치기이음에서 용접선 시각 추적 시스템에 관한 연구)

  • 신정식;김재웅;나석주;최칠룡
    • Journal of Welding and Joining
    • /
    • v.9 no.2
    • /
    • pp.20-28
    • /
    • 1991
  • The main subject of this study is the construction of an automatic welding system that has the capability to trace the weld seam in GMA welding of lap joints. The system was composed of a vision sensor, moving torch, and personal computer(IBM-PC). In the developed vision sensor, an image was captured by the frame grabber at the time of short circuit during welding. The threshold method was adopted for determining the structured light and the central difference method for detecting the weld joint. And the seam tracing of the torch was performed by using the data regeneration algorithm. In this system using the image at the time of short circuit, weld seam tracking was performed without any relations to arc light and spatters.

  • PDF

Weldability of STS316L for LNG Carrier by Fiber Laser (파이버 레이저를 이용한 LNG선용 STS316L의 용접특성)

  • Kim, Jong-Do;Lee, Jae-Beom;Lee, Chang-Je;Song, Moo-Keun;Nam, Gi-Jeong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1061-1068
    • /
    • 2012
  • These days, world wide interest about global warming and environmental pollution and exhausting fossil fuel which have been main energy source in all around the world. So many country have tried to find out the solution by investing new & renewable and clean energy. Therefore LNG have been widely used as a substitution of fossil fuel and clean energy that emits less pollutant like SOx, NOx. Therefore LNG consumption has been quickly raised and LNG carriers have been getting larger for decades. In this study, high power fiber laser was used for welding of stainless steel for LNG carrier to increase its productivity. Used material was STS316L which has low carbon less than 0.03% and its thickness was 8 mm. We carried out bead, lap and butt welding by using the fiber laser which has maximum power up to 5kW. As a result, we could find out that lap and butt joint was possible at welding speed of 2.0m/min and 3.0m/min respectively.

Development of Simplified Finite Element Models for Welded Joints (용접 결합부에 대한 단순화 유한요소 모델 개발)

  • Song, Seong-Il;Ahn, Sung Wook;Kim, Young Geul;Kim, Hyun-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1191-1198
    • /
    • 2015
  • In this paper, we develop simplified finite element (FE) models for butt-, lap- and T-welded joints by performing numerical and experimental experiments. Three-point bending tests of butt- and lap-welded specimens are performed to obtain the stiffness of the specimens and the strains at points near the welding beads. Similarly the stiffness and strains of T-welded specimen are measured by applying a point load at the end of the specimen. To develop simplified FE models, we consider the shape parameters of width, thickness and the angle of weld elements in the numerical simulations. The shape parameters of the simplified FE models are determined by building linear regression models for the experimental data sets.

Defects Evaluation at Lap Joint Friction Stir Welding by Lock-in Ultrasound Infrared Thermography (위상잠금 초음파 적외선열화상에 의한 겹치기 마찰교반용접부의 결함 평가)

  • Choi, Man-Yong;Park, Hee-Sang;Park, Jeong-Hak;Kang, Ki-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.104-109
    • /
    • 2010
  • Lap joint friction stir welding(LFSW) is an relatively new solid state joining process. A6061-T6 aluminium alloy has gathered wide acceptance in the fabrication of light weight structures requiring a high strength to weight ratio and good corrosion resistance. Test methods used in this paper, lock-in thermography, a phase difference between the defect area and the healthy area indicates the qualitative location and size of the defect. In this paper, the defects detected from the thermal image of mechanical properties for weld were evaluated and compared by the lock-in infrared thermography technique.

Fracture Mechanical Characterization of Bi-material Interface for the Prediction of Load Bearing Capacity of Composite-Steel Bonded Joints (복합재료-탄소강 접착제 결합 조인트의 하중지지 능력 예측을 위한 이종 재료 접합 계면의 파괴 역학적 분석)

  • Kim, Won-Seok;Shin, Kum-Chel;Lee, Jung-Ju
    • Composites Research
    • /
    • v.19 no.4
    • /
    • pp.15-22
    • /
    • 2006
  • One of the primary factors limiting the application of composite-metal adhesively bonded joints in structural design is the lack of a good evaluation tool for the interfacial strength to predict the load bearing capacity of boned joints. In this paper composite-steel adhesion strength is evaluated in terms of stress intensity factor and fracture toughness of the interface corner. The load bearing capacity of double lap joints, fabricated by co-cured bonding of composite-steel adherends has been determined using fracture mechanical analysis. Bi-material interface comer stress singularity and its order are presented. Finally stress intensities and fracture toughness of the wedge shape bi-material interface corner are determined. Double lap joint failure locus and its mixed mode crack propagation criterion on $K_1-K_{11}$ plane have been developed by tension tests with different bond lengths.