• Title/Summary/Keyword: 결합강도

Search Result 1,844, Processing Time 0.026 seconds

Comparison of the shear bond strength of brackets in regards to the light curing source (광중합기의 광원에 따른 브라켓 전단결합강도 비교)

  • Cha, Jung-Yul;Lee, Kee-Joon;Park, Sun-Hyung;Kim, Tae-Weon;Yu, Hyung-Seog
    • The korean journal of orthodontics
    • /
    • v.36 no.3 s.116
    • /
    • pp.198-206
    • /
    • 2006
  • With the introduction of the xenon plasma arc curing light and the LED curing light as orthodontic curing lights, the polymerizing time of orthodontic composites has clearly decreased. In contrast to various research cases regarding the polymerization time and bond strength of the xenon plasma arc curing light, not enough research exists on the LED curing light, including the appropriate polymerization time. The objective of this research was to compare the bond strength of the plasma curing light and the LED curing light in regards to the polymerization time. The polymerization time needed to achieve an appropriate adhesion strength of the bracket has also been studied. After applying orthodontic brackets using composite resin onto 120 human premolars, the plasma arc curing light and the LED curing light were used for polymerization for 4, 6, and 8 seconds accordingly. This research proved that the LED curing light provided appropriate bond strength for mounting orthodontic brackets even with short seconds of polymerization. The expensive cost and large size of the device limits the use of the plasma arc curing light, whereas the low cost and easy handling of the LED curing light may lead to greater use in orthodontics.

A STUDY ON THE SHEAR BOND STRENGTHS OF VISIBLE LIGHT-CURED GLASS IONOMER CEMENT WITH SEVERAL LIGHT-CURING UNITS (수종의 광중합기를 이용한 교정용 광중합형 글라스 아이오노머 시멘트의 전단 결합 강도에 관한 연구)

  • Kim, Min-Soo;You, Seoung-Hoon;Kim, Jong-Soo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.1
    • /
    • pp.81-90
    • /
    • 2007
  • The purpose of this study was to assess the effect of light-tip distance on the shear bond strength of a visible light-cured glass ionomer cement(Fuji Ortho LC ; GC, Japan) cured with three different light curing units : a halogen light(Elipar Trilight ; 3M ESPE, Seefeld, Germany), a Light Emitting Diode (LED, Elipar Freelight2 ; 3M ESPE, Seefeld, Germany) and a plasma arc light (Flipo ; LOKKI, France). 1. When used at a distance of 0mm from the bracket, the three light curing units showed no statistically different shear bond strengths. At distance of 3 and 6mm, no significant differences were found between the halogen and plasma arc lights, but both had significantly higher shear bond strengths than the LED light. 2. The halogen light and plasma arc light showed that no significant differences in bond strength were found among the three distances. Using the LED light, a greater light-tip distance produced significantly lower shear bond strengths.

  • PDF

A Comparison of shear Bonding Strength with Polyacrylic acid and Phosphoric acid Enamel Surface Conditioning (폴리아크릴산과 인산으로 법랑질표면 처리후 전단결합강도의 비교)

  • Roh, Joung-Sub;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.32 no.1 s.90
    • /
    • pp.51-57
    • /
    • 2002
  • The purpose of this study was to compare in vitro shear bonding strength with three different enamel surface preparations (1) 30% sulfated polyacrylic acid with 0.3M lithium sulfate (2) 40% sulfated polyacrylic acid with 0.3M lithium sulfate (3) 37% phosphoric acid. 105 extracted human premolar teeth were divided into each three groups of 35. Metal brackets were bonded to teeth in the three groups. The same self curing resin was used for all groups. A shearing force was applied to the teeth. After debonding, bases of bracket and enamel surfaces were examined under steroscopic microscope to determine the failure modes. Statistical analysis of the data was carried out with one way ANOVA and Student t- test. The results were as follows. 1. Shear bond strength values for the 30% polyacrylic acid and 40% polyacrylic acid group were approximately two thirds of the phosphoric acid group. It maintains clinically acceptable but not enough bond strength. 2. There was no statistically significant difference in shear bond strengths between 30% and 40% polyacrylic acid group. 3. The failure modes of brackets had some differences. In polyacrylic acid groups, the percentage of adhesive/enamel failure was higher than that of adhesive/ bracket interface failure. On the contrary in phosphoric acid groups, the results were reversed. Further study of bond strength could be required. If polyacrylic acid enamel conditioning is used clinically.

Shear Bond Strength Comparison of Different Adhesive Systems to Calcium Silicate-based Materials (Calcium Silicate-based 재료에 대한 수 종 상아질 접착제의 전단결합강도 비교)

  • Shin, Hyunok;Kim, Misun;Nam, Okhyung;Lee, Hyoseol;Choi, Sungchul;Kim, Kwangchul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.45 no.4
    • /
    • pp.445-454
    • /
    • 2018
  • The aim of this study was to measure the shear bond strength (SBS) of different adhesive systems to calcium silicate-based materials (Biodentine and RetroMTA). Eighty cylindrical acrylic blocks, with a hole (5.0 mm diameter, 2.0 mm height) in each, were prepared. The holes were filled with Biodentine (BD) and RetroMTA (RMTA), and the specimens were divided into 2 groups. Each group was classified into 4 subgroups: Clearfil$^{TM}$ SE (CSE) ; AQ bond (AQ) ; All bond universal Self-etch (ABU-SE) ; and All bond universal Total-etch (ABU-TE). After the application of different adhesive systems, composite resin (Z350) was applied over BD and RMTA. The SBS was measured using a universal testing machine, and the data were compared using the Kruskal-Wallis test and the Mann-Whitney test. The highest and lowest values of SBS were observed for BD-ABU-SE and RMTA-AQ, respectively. No significant differences were found in the SBS between ABU-TE and ABU-SE and between ABU-TE and CSE to BD and RMTA. According to the data, BD showed a higher SBS than did RMTA when BD and RMTA are compared in the same adhesive agents. Further, among all groups, composite resin with ABU-SE showed better bond strength to BD and RMTA.

Comparative evaluation of micro-shear bond strength between two different luting methods of resin cement to dentin (합착 술식에 따른 레진 합착제의 상아질에 대한 미세전단결합강도의 비교 연구)

  • Lee, Yoon-Jeong;Park, Sang-Jin;Choi, Kyoung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.4
    • /
    • pp.283-293
    • /
    • 2005
  • The purpose of this study was to evaluate the effect of dual bonding technique by comparing microshear bond strength between two different luting methods of resin cement to tooth dentin. Three dentin bonding systems(All-Bond 2, One-Step, Clearfil SE Bond), two temporary cements (Propac, Freegenol) were used in this study. In groups used conventional luting procedure, dentin surfaces were left untreated. In groups used dual bonding technique, three dentin bonding systems were applied to each dentin surface. All specimens were covered with each temporary cement. The temporary cements were removed and each group was treated using one of three different dentin bonding system. A resin cement was applied to the glass cylinder surface and the cylinder was bonded to the dentin surface. Then, micro-shear bond strength test was performed. For the evaluation of the morphology at the resin/dentin interface, SEM examination was also performed. 1. Conventional luting procedure showed higher micro-shear bond strengths than dual boning technique. However, there were no significant differences. 2. Freegenol showed higher micro-shear bond strengths than Propac, but there were no significant differences. 3. In groups used dual bonding technique, SE Bond showed significantly higher micro-shear bond strengths in One-Step and All-Bond 2 (p<0.05), but there was no significant difference between One-Step and All-Bond 2. 4. In SEM observation, with the use of All-Bond 2 and One-Step, very long and numerous resin tags were observed. This study suggests that there were no findings that the dual bonding technique would be better than the conventional luting procedure.

Investigation of the Shear Bond Strength of Orthodontic Buttons by Light Curing Using an Extended Optic Fiber (광섬유를 이용한 광중합에 따른 교정용 버튼의 전단결합강도에 관한 연구)

  • Yoon, Garam;Lee, Nanyoung;Lee, Sangho;Jih, Myeongkwan;Choi, Wonseok;Sung, Minah
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.48 no.1
    • /
    • pp.105-114
    • /
    • 2021
  • The objective of this study is to analyze the shear bond strength of orthodontic buttons according to light tip distance and optic fiber diameter when an extended optic fiber was applied to the tip of a curing light unit. In this study, 315 extracted premolar teeth were divided into 3 groups. Orthodontic buttons were attached using no optic fibers (Group I), 3.0 mm diameter optic fibers (Group II), or 5.0 mm diameter optic fibers (Group III). Each group was divided into subgroups A - C (5.0, 10.0, and 15.0 mm light tip distance), respectively. Shear bond strength was then measured while varying the light tip distance. In group I, shear bond strength significantly decreased as the light tip distance increased. When the shear bond strength was evaluated according to the optic fiber diameter, no statistical significance was observed in group of 5.0 mm light tip distance. Compared with group IB, group IIIB showed significantly greater shear bond strength. Compared with group IC, all groups using 3.0 or 5.0 mm diameter optic fibers showed significantly greater shear bond strength. Therefore, when a curing light unit has poor accessibility, optic fibers with a large diameter should be considered.

Effect of the New Surface Treatment Method of Zirconia on the Shear Bond Strength with Resin Cement (지르코니아의 새로운 표면처리 방법이 레진 시멘트와의 전단결합강도에 미치는 영향)

  • Cho, Won-Tak;Bae, Ji-Hyeon;Choi, Jae-Won
    • Journal of Digital Convergence
    • /
    • v.19 no.3
    • /
    • pp.245-251
    • /
    • 2021
  • This study was to investigate the effect of the new surface treatment method of zirconia on the shear bond strength with resin cement. The zirconia specimens were classified according to the surface treatment. CON: non-treatment, HF: 10 minutes exposure to 9% HF, ZS15: Apply 15% ZrO2 slurry, ZS30: Apply 30% ZrO2 slurry, ZS50: Apply 50% ZrO2 slurry. The resin cement was layered on the surface treated zirconia, and the shear bond strength between the zirconia and the resin cement was measured after thermo-cycling. The statistical methods for shear bond strength were Kruskal-Wallis test, Mann-Whitney U test, and Bonferroni correction(α=.05/10=.005). ZS15, ZS30, and ZS50 groups treated with zirconia slurry showed higher shear bond strength than CON and HF groups(p<.05/10=.005). Within the limits of this study, the surface treatment using zirconia slurry increased the shear bond strength with resin cement. The new surface treatment method complements and improves the limitations of the adhesion of zirconia, so that various clinical applications of zirconia can be expected.

An in vitro study of a few crystal growth solutions on the bracket shear bond strength (수종의 실험 결정형성용액에 의한 브라켓 전단결합강도의 비교)

  • Jeon, Yun-Ok;Lee, Ki-Soo
    • The korean journal of orthodontics
    • /
    • v.29 no.5 s.76
    • /
    • pp.613-625
    • /
    • 1999
  • The purpose of this study was to compare the bracket shear bond strengths of the crystal growth solutions with those of the $37\%$ phosphric acid etch technique. The 4 crystal growth solutions were made experimentally in the lab, that is, (1) $30\%$ polyacrylic acid solution containing 0.3 M sulfuric acid (ES 1), (2) $30\%$ polyacrylic acid solution containing 0.6M sulfuric acid (ES 2), (3) $30\%$ polyacrylic acid solution containing 0.3 M sulfuric acid and 0.6 M lithium sulfate(ES 3), and (4) $30\%$ polyacrlic acid solution containing 0.3 M sulfuric acid and $5\%$ phosphoric acid(ES4). The $37\%$ phosphoric acid solution used as a control. Bovine lower incisor tooth enamel was treated by the above solutions for 60 sec, washed out for 20 sec with slow water stream, and bonded lower anterior edgewise bracket with the light curing orthodontic composite resin adhesives. The teeth bonded brackets were stored in the distilled water at room temperature for 24 h, and followed to test the bracket shear bond strength. The acid etch technque showed 177.6 kg/$cm^2$ of mean shear bond strength which was the highest among the enamel treatment solutions. ES 1 shown 58.4 kg/$cm^2$ of mean shear bond strength and that of ES 4 showed 66.5 kg/$cm^2$. There was no significant difference between the two(p>0.05). ES2 showed 110.6kg/$cm^2$ of mean shear bond strength which was $62.3\%$ of that of acid etch technique. ES 3 showed 131.1 kg/$cm^2$ of mean shear bond strength which was the highest among experimental crystal growth solutions and which was $74\%$ of that of acid etch technique. The shear bond strengths of the crystal growth solutions were significantly lower that that of acid etch technique(p<0.05). The results sugest that although bracket shear bond strength of $30\%$ polyacrylic acid solution containing 0.3M sulfuric acid and 0.6 M lithium sulfate were showed the highest, it is low for the clinical application of this solution.

  • PDF

Shear bond strength of the three different kinds of resin cement on CAD/CAM ceramic inlay (CAD/CAM 세라믹 인레이에 대한 3종의 레진 시멘트의 전단결합강도에 관한 연구)

  • Baek, Chul-Woo;Park, Cheol-Woo;Park, Jun-Sub;Ryu, Jae-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.1
    • /
    • pp.20-26
    • /
    • 2013
  • Purpose: The purpose of this study was to evaluate the bond strengths between the latest CAD/CAM ceramic inlay and various resin cements which are used primarily for esthetic restoration. Materials and methods: Cylindrical ceramic blocks(Height: 5 mm, diameter: 3 mm) were fabricated by using Cerec3 and bonded on the dentin of the ninety extracted caries-free molars using three different kinds of resin cement(Unicem$^{(R)}$, Biscem$^{(R)}$, and Variolink II$^{(R)}$) according to the manufacturer's instructions. Ninety specimens were divided into 3 groups according to three different kinds of resin cement. Half of each group were conducted thermocycling under the conditions of the $5-55^{\circ}C$, 5,000 cycle but the other half of them weren't. All specimens were kept in normal saline $37^{\circ}C$, for 24 hours before measuring the bond strength. The shear bond strength was measured by Universal testing machine with a cross head speed of 0.5 mm/min. The results were analyzed statistically by t-test and one-way ANOVA. Results: Unicem$^{(R)}$ group showed the highest shear bond strength despite a slight decline by thermocycling. The shear bond strength of Unicem$^{(R)}$ group and ValiolinkII$^{(R)}$ group were significantly influenced by thermocycling, whereas Biscem$^{(R)}$ group was not influenced (P<.05). There were no significant differences in the bond strength between the three groups without thermocycling, but there was significant differences between Unicem$^{(R)}$ group and Valiolink II$^{(R)}$ group with thermocycling(P<.05). Conclusion: It has been shown to be clinically effective when the self-adhesive resin cements Unicem$^{(R)}$ and Biscem$^{(R)}$ were used instead of the etch-and-rinse resin cement Valiolink II$^{(R)}$ during the bonding of CAD/CAM ceramic inlay restorations with teeth.

Tensile Bond Strength of Composite Resin Treated with Er:YAG Laser (Er:YAG 레이저를 활용한 와동형성시 컴포짓 결합강도)

  • Shin, Min;Ji, Young-Duk;Rhu, Sung-Ho;Cho, Jin-Hyoung
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.2
    • /
    • pp.269-276
    • /
    • 2005
  • This in vitro study evaluated the influence of a flowable composite resin on the tensile bond strength of resin to enamel and dentin treated with Er:YAG laser and diamond bur. 96 Buccal enamel and mid-coronal dentin were laser-irradiated using an Er:YAG laser and treated with diamond bur. Each groups(48) were divided two small groups depends on acid-etching procedure. Light-cure flowable resin(Metafil Flo) and self-cure resin(Clearfil FII New Bond) were used in this study. After surface etching with 37% phosphoric acid and the application of an adhesive system, specimens were prepared with a hybrid composite resin. After 24hours storage in distilled water at 37$^{\circ}C$, all samples were submitted to the tensile bond strength evaluation, using a universal testing machine(Z020, Zwick, Germany). The obtained results were as follows: 1. TBS of acid-etching group were higher than those of non-etching group in both enamel and dentin treated with Er:YAG laser and diamond bur. Laser 'conditioning' was clearly less effective than acid-etching. Moreover, acid etching lased enamel and dentin significantly improved the microTBS of M-Flo. 2. In enamel, TBS of laser-irradiated group were lower than those of bur-prepared group. However, in flowable resin subgroup, there were not differed those between two groups in dentin. 3. In laser-treated group, TBS of flowable composite resin were higher than those of self-curing resin in dentin, however, there was no difference in enamel. From this study, we can conclude that the self- and light-cure composite resin bonded significantly less effective to lased than to bur-cut enamel and dentin, and that acid-etch procedure remains mandatory even after laser ablation. We suggest that Er:YAG laser was useful for preparing dentin cavity with flowable resin filling.