Journal of the Society of Cosmetic Scientists of Korea
/
v.33
no.2
/
pp.117-126
/
2007
This study investigated the effect of the price and brand name on the consumer's evaluation of cosmetics. 363 women from 20's to 50's living in Seoul and the metropolitan area were asked to use and describe the given samples of cosmetic products for one week with different information of price and brand name. The results of this study are as follows: First, the assessment of the facial toner, moisturizer and cream does not show a significant statistical difference between the group of 'renowned' and 'renownless'. Second, the assessment of the facial toner, moisturizer, and cream shows a significant statistical difference between the user groups which received the prior information whether the cosmetics are 'high price' or 'low price'. Third, the assessment of the users' satisfaction of the 3 kinds of cosmetic products mentioned above is influenced by 'renown' an 'price'. Finally, the interaction of the factor 'renown' and 'price' influences on the cosmetics' effectiveness significantly. From this study, it was discovered that the evaluation and the degree of satisfaction on cosmetics were influenced by the price and brand names. This will improve the understanding of consumers' behavior and personal decision-making, which in be the key of marketing strategy.
This study was conducted to analyze the effect Meister high school students' career maturity with respect to the impact on school maladjustment. Also, this study clarify the relationship. This study purpose is to permanently provide Meister as the basis for the vocational education sector career education needed to faithfully serve as a special purpose high schools. Tools used for the survey is maladaptive measurement tools developed by Leegyumi (2004) and Career maturity measurement tools developed at Korea Research Institute for Vocational Education and Training (2012). Using these tools, a reliability test was conducted. Meister students' career maturity was conducted correlation analysis and multiple regression analysis to analyze the impact of school maladjustment. Independent variables are consisted of career maturity and independence, attitude toward the job, planning, self-understanding, rational decision-making, information retrieval, knowledge of the desired job, career exploration and ready for action. Meister high school student's career maturity according to the students' background variables are little girls was higher than boys, but it was not statistically significant. T-test was conducted to ascertain the career maturity and school maladjustment differences of adaptation groups and maladaptive group in meister school students in background variables. A career maturity and school maladjustment between adaptive and maladaptive population groups showed a statistically significant difference in background variables.
The purpose of this paper is to provide useful knowledge for recreation management in natural park(NP) by evaluating use suitability of recreation resource. We had obtained data through a questionnaire, which surveyed 385 visitors at 6 of the 73 NP in Korea in 2001, based on stratified sampling method. We have analyzed the data using the multiple regression method. We found that 1) in bivariate analysis, the relationships between use suitability and all the recreation resources are fairly high and statistically significant. The higher the degree of recreation resources, the higher the degree of use suitability. 2) in multivariate analysis, topography, social resource(SR), cultural resource(CR), landscape, smell, color and sound(SCS) have been turned out to be statistically significant at one percent level. 3) the direction of relationship between topography, SR, CR, landscape, SCS and use suitability is same. 4) in relative contribution of the use suitability of recreation resource, level of topography has been turned out to have about 1.05, 1.56, 2.16 and 2.70 times more important than that of SCS, SR, landscape, topography, respectively This results will be used for a criterion for recreation resource evaluation and a settlement of management priority and increasing user's satisfaction.
The purpose of this studies was analyzed moisture content, rheology and sensual test of jujube jungkwa by addition of water, sugar, fructose at processing of jujube jungkwa for development the optimization for processing of jujube jungkwa. The changes of moisture contents at process condition of jujube jungkwa were increased by increasing of sugar and water quantity. And moisture contents of jujube jungkwa were increased by high fructose quantity and low sugar quantity, but were decreased by high sugar and fructose quantity. The 'b' values of jujube jungkwa at low sugar quantity were decreased by the increasing of water quantity, but increased at high sugar quantity. The cohesiveness of jujube jungkwa at 0.03 kg of fructose were high by the increasing of sugar quantity, but those at 0.065 kg of fructose were high by the decreasing of sugar quantity. And those at 0.050 kg of fructose were similar without the quantity of sugar. The sweet taste of jujube jungkwa were increased by the increasing of water and fructose quantity. The characteristics of jungkwa at conditions of processing for the best quality of jujube jungkwa were 18-20% of moisture content, 2.0-3.0 of 'b' values, 3.0-3.2 of color scores, and 3.3-3.4 of sweet taste scores. The conditions of processing for the best quality of jujube jungkwa were determined to 0.95-1.04 L of water, 0.052-0.060 kg of fructose at 0.95 kg of sugar.
Journal of the Korean Institute of Intelligent Systems
/
v.25
no.2
/
pp.126-132
/
2015
Technology forecasting is about understanding a status of a specific technology in the future, based on the current data of the technology. It is useful when planning technology management strategies. These days, it is common for countries, companies, and researchers to establish R&D directions and strategies by utilizing experts' opinions. However, this qualitative method of technology forecasting is costly and time consuming since it requires to collect a variety of opinions and analysis from many experts. In order to deal with these limitations, quantitative method of technology forecasting is being studied to secure objective forecast result and help R&D decision making process. This paper suggests a methodology of technology forecasting based on quantitative analysis. The methodology consists of data collection, principal component analysis, and technology forecasting by logistic regression, which is one of the data mining techniques. In this research, patent documents related to autonomous vehicle are collected. Then, the texts from patent documents are extracted by text mining technique to construct an appropriate form for analysis. After principal component analysis, logistic regression is performed by using principal component score. On the basis of this result, it is possible to analyze R&D development situation and technology forecasting.
As personal devices and pervasive technologies for interacting with networked objects continue to proliferate, there is an unprecedented world of scattered pieces of contextualized information available. However, the explosive growth and variety of information ironically lead users and service providers to make poor decision. In this situation, recommender systems may be a valuable alternative for dealing with these information overload. But they failed to utilize various types of contextual information. In this study, we suggest a methodology for context-aware recommender systems based on the concept of contextual boundary. First, as we suggest contextual boundary-based profiling which reflects contextual data with proper interpretation and structure, we attempt to solve complexity problem in context-aware recommender systems. Second, in neighbor formation with contextual information, our methodology can be expected to solve sparsity and cold-start problem in traditional recommender systems. Finally, we suggest a methodology about context support score-based recommendation generation. Consequently, our methodology can be first step for expanding application of researches on recommender systems. Moreover, as we suggest a flexible model with consideration of new technological development, it will show high performance regardless of their domains. Therefore, we expect that marketers or service providers can easily adopt according to their technical support.
This study predicts the average scores of top 150 PGA golf players on 132 PGA Tour tournaments (2013-2015) using data mining techniques and statistical analysis. This study also aims to predict the Top 10 and Top 25 best players in 4 different playoffs. Linear and nonlinear regression methods were used to predict average scores. Stepwise regression, all best subset, LASSO, ridge regression and principal component regression were used for the linear regression method. Tree, bagging, gradient boosting, neural network, random forests and KNN were used for nonlinear regression method. We found that the average score increases as fairway firmness or green height or average maximum wind speed increases. We also found that the average score decreases as the number of one-putts or scrambling variable or longest driving distance increases. All 11 different models have low prediction error when predicting the average scores of PGA Tournaments in 2015 which is not included in the training set. However, the performances of Bagging and Random Forest models are the best among all models and these two models have the highest prediction accuracy when predicting the Top 10 and Top 25 best players in 4 different playoffs.
The indices to choose the object countries for developing overseas industrial park were developed and applied in this paper. The results are showing as follows. First, the Korean enterprises are branched out into total 128 countries as of the first quarter of 2010, and the 13 asian countries including China, Vietnam, Japan, and Hongkong shows the majority of precedence 20 countries among the reported during 1980-2010. Second, the 3 steps of selecting the principal region to branch out, establishing assessment indices and criteria, and choosing strategical target counties were developed to choose the countries for developing overseas industrial park. The 38 of 128 countries were selected where the GDP per capita is lower than Korea, and the local reports of incorporation during 2007-2010 are more than 10 times. Then, the 10 countries were excluded where the minimum wages during 2008-2009 are similar to Korean ($815/month). Consequently, the 28 countries including China, Vietnam, and Cambodia etc. were selected as the major target regions. Third, the indices to choose countries for developing overseas industrial park are classified into 5 categories-investment condition, labor market flexibility, potential market demand, population, changing rate of the reported number of manufacturing industry, and detailed indices for each category were selected, then the weight were given with the consideration of importance. Finally, Indonesia, Mongolia, and Uzbekistan were selected as the strategical target counties where acquire the high score in labor market flexibility and investment condition, relatively undeveloped, and friendly to Korea.
The recommendation system automatically provides the predicted items which are expected to be purchased by analyzing the previous customer behaviors. This recommendation system has been applied to many e-commerce businesses, and it is generating positive effects on user convenience as well as the company's revenue. However, there are several limitations of the existing recommendation systems. They do not reflect specific criteria for evaluating products or the factors that affect customer buying decisions. Thus, our research proposes a collaborative recommendation model algorithm that utilizes each customer's online product reviews. This study deploys topic modeling method for customer opinion mining. Also, it adopts a kernel-based machine learning concept by selecting kernels explaining individual similarities in accordance with customers' purchase history and online reviews. Our study further applies a multiple kernel learning algorithm to integrate the kernelsinto a combined model for predicting the product ratings, and it verifies its validity with a data set (including purchased item, product rating, and online review) of BestBuy, an online consumer electronics store. This study theoretically implicates by suggesting a new method for the online recommendation system, i.e., a collaborative recommendation method using topic modeling and kernel-based learning.
Journal of the Institute of Electronics and Information Engineers
/
v.52
no.7
/
pp.143-152
/
2015
The 'Quality Competitiveness Index' (QCI) is defined as an quantitative and disinterested indicator that measures and compares the quality of products across the world. The purpose of this study is to suggest the 'Quality Competitiveness Assessment Model' (QCAM) and calculate QCI of a popular UHF RFID Label tag (Global ISO 18000-3C supported) available these days in a global apparel market. The model was based on KS-QEI(Korean Standard-Quality Excellence Index), and was composed with the following 4 evaluation categories, a process capability test, an environmental reliability test, a durability test and a design margin test. The QCI score can be calculated with the following formula, using the weighted arithmetic mean between a score of each evaluation category ($X_1$, $X_2$, $X_3$, $X_4$) and each weight($w_1$, $w_2$, $w_3$, $w_4$). The actual weights was determined by an result of AHP survey to which was conducted for the related Industry-University-Institute experts. The proposed index shows the results of comparisons with global competitor's products as well as the high-quality domestic RFID label tags. In addition, it will play an important role for manufacturers when developing their future products.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.