• Title/Summary/Keyword: 결정입자 변화

Search Result 642, Processing Time 0.033 seconds

Pigment Analysis and Conservation Method of Avalokitesvara in Potalaka of Hyeondeungsa, Gapyeong (가평 현등사 수월관음도의 안료분석 및 보존방법)

  • Seo, Jeong-Ho;Cha, Byung-Gap;Jung, Hee-Soo
    • Journal of Conservation Science
    • /
    • v.27 no.2
    • /
    • pp.223-229
    • /
    • 2011
  • Buddha painting cultural properties couldn't avoid the change of colors and the exfoliation phenomenon by the characteristic of material and environmental factors. Especially, because in the beginning of the fine crack and the decoloration phenomenon on the surface of pigment would be significantly decrease stability of the whole object, it is necessary to take particular measure. Therefore, this is a study on conservation of Avalokitesvara in Potalaka in Hyeondeungsa in Gapyeong. It treated damaged parts of the object, carried out backing papers and matching colors. And then, it examined scientific analysis of pigments. Also, it performed nondestructive testing like XRF, FT-IR, and image microscope to investigate the quality of the material of hanji using the object and the component and characteristic of pigments. As a result, FT-IR spectrum matching Korean traditional paper(hanji) was detected in hanji of Avalokitesvara in Potalaka in Hyeondeungsa. The black pigment making a thin layer over the white pigment would estimate carbon compounds of unconfirmed ink stick or soot as XRF and FT-IR. Also, the white pigment was lead white($PbCO_3{\cdot}Pb(OH)_2$) involving Pb(Lead) and a carbonate. It was observed that the crystal of blue pigment had the different sizes of the particles from the microscope. In the case of this blue pigment, it showed cobalt blue and lead white was mixed when it used because both Cu and Pb were highly detected in XRF data.

Effect of Microporous Structure of Al2O3/PVdF_HFP Ceramic Coating Layers on Thermal Stability and Electrochemical Performance of Composite Separators for Lithium-Ion Batteries (Al2O3/PVdF_HFP 세라믹코팅층의 미세기공구조가 리튬이차전지용 복합분리막의 열 안정성 및 전기화학특성에 미치는 영향)

  • Jeong, Hyun-Seok;Kim, Kyu-Chul;Lee, Sang-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.4
    • /
    • pp.324-328
    • /
    • 2009
  • The internal short-circuit between cathodes and anodes has been known to be a critical concern for the safety failures of lithium-ion batteries, which is strongly influenced by the thermal stability of separators. In this study, to effectively suppress the internal short-circuit failures, we developed a new composite separator with the improved thermal stability compared to conventional polyolefin-based separators. The composite separators were prepared by introducing a ceramic coating layer ($Al_2O_3$/PVdF-HFP) onto both sides of a polyethylene (PE) separator. The microporous structure of ceramic coating layers is determined by controlling the phase inversion of coating solutions and becomes more developed with the increase of nonsolvent (water) content. This structural change of ceramic coating layers was observed to greatly affect the thermal stability as well as the electrochemical performance of composite separators, which was systematically discussed in terms of phase inversion.

Removal of Nitrate Nitrogen for Batch Reactor by ZVI Bipolar Packed Bed Electrolytic Cell (영가철 충진 회분식 복극전해조에 의한 질산성 질소 제거)

  • Jeong, Joo Young;Park, Jeong Ho;Choi, Won Ho;Park, Joo Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2B
    • /
    • pp.187-192
    • /
    • 2011
  • Nitrate nitrogen is common contaminant in groundwater aquifers, its concentration is regulated many countries below 10 mg/L as N (As per WHO standards) in drinking water. An attempt was made to get optimal results for the treatment of nitrate nitrogen in groundwater by conducting various experiments by changing the experimental conditions for ZVI bipolar packed bed electrolytic cell. From the experimental results it is evident that the nitrate nitrogen removal is more effective when the reactor conditions are maintained in acidic range but when the acidic environment changes to alkaline due to the hydroxide formed during the process of ammonia nitrogen there by increasing the pH reducing the hydrogen ions required for reduction which leads to low effectiveness of the system. In the ZVI bipolar packed bed electrolytic cell, the packing ratio of 0.5~1:1 was found to be most effective for the treatment of nitrate nitrogen because ZVI particles are isolated and individual particle act like small electrode with low packing ratio. It is seen that formation of precipitate and acceleration of clogging incrementally for packing ratio more than 2:1, decreasing the nitrate nitrogen removal rate. When the voltage is increased it is seen that kinetics and current also increases but at the same time more electric power is consumed. In this experiment, the optimum voltage was determined to be 50V. At that time, nitrate nitrogen was removed by 94.9%.

Annealing Effects on Al0.2CoFe1.8O4 Ferrite Film and Powder (Sol Gel 방법으로 제조한 Al0.2CoFe1.8O4 분말과 박막의 열처리 효과)

  • Chae, Kwang-Pyo;Lee, Jae-Gwang;Kweon, Hyuck-Su;Kim, Jung-Hoon;Lee, Young-Bae
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.3
    • /
    • pp.186-190
    • /
    • 2005
  • The $Al_{0.2}CoFe_{1.8}O_4$ ferrite films and powders were prepared by the sol-gel method. The crystallographic and magnetic properties of the samples were examined with annealing temperature by X-ray diffraction, $M\ddot{o}ssbauer$ spetroscopy and vibrating sample magnetometry. The powder samples showed the presence of spinel structure at annealing temperatures above 673 K, while the film samples indicated the spinel structure above 873 K, also the particle size increased with rising annealing temperatures. The $M\ddot{o}ssbauer$ spectra of $Al_{0.2}CoFe_{1.8}O_4$ powder annealed above 873 K could be fitted as the superposition of two Zeeman sextets due to ferrimagnetic phase. And the spectra of annealed at 673 K exhibited the superposition of ferrimanetic and paramagnetic phase and those of annealed at 473 K showed only a paramagnetic phase. The magnetic behaviour of powders appeared that the coercivity increased until annealed at 673 K but decreased above this temperature. The coercivity of the film samples decreased from 1.084 kOe at 873 K to 0.540 kOe at 1073 K with increasing annealing temperatures.

Mossbauer study of $CoCr_xFe_{2-x}O_4$ (Mossbauer 분광법에 의한 $CoCr_xFe_{2-x}O_4$의 연구)

  • 채광표;이혁진;이재광;이성호;이영배
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.2
    • /
    • pp.74-80
    • /
    • 2000
  • CoCr$_{x}$ Fe$_{2-x}$O$_4$(0.0$\leq$x$\leq$1.0) ferrites have been fabricated by sol-gel method. The crystallographic and magnetic properties of the samples were investigated by means of x-ray diffraction, scanning electron microscophy, Mossbauer spectroscopy and vibrating sample magnetometry. The structure of all the samples is cubic spinel type and the lattice constant decrease with increasing Cr content. The substituted Cr ions were located only in the B-site. The particle size also decreases with increasing Cr content. The Mossbauer spectra consist of two sextets due to Fe$^{3+}$ions at A- and B sites for 0.0$\leq$x$\leq$0.6, while, a paramagnetic doublet appears for 0.8$\leq$x$\leq$1.0. The magnetic hyperfine field decreases with increasing Cr content. The relaxation spectra was shown at 0.8$\leq$x$\leq$1.0 in CoCr$_{x}$ Fe$_{2-x}$O$_4$. The coercivity decreases drastically, while, the saturation magnetization decreases linearly with increasing x.ing x.

  • PDF

Effect of the Structure of MoO3/bismuth molybdate Binary Phase Catalysts on the Selective Oxidation of Propylene (MoO3/bismuth molybdate 혼합 2상 촉매의 구조에 따른 프로필렌 선택산화반응 특성)

  • Cha, T.B.;Choi, M.J.;Park, D.W.;Chung, J.S.
    • Applied Chemistry for Engineering
    • /
    • v.3 no.1
    • /
    • pp.53-63
    • /
    • 1992
  • M/BM -series catalysts, $MoO_3$ supported on ${\alpha}-Bi_2Mo_3O_{12}$ were also prepared by impregnation method. BM/M-series catalysts, ${\alpha}-Bi_2Mo_3O_{12}$ supported on $MoO_3$ were also prepared by coprecipitation. Structure and catalytic properties of the two phase catalysts were studied by means of using nitrogen adsorption, X-ray diffraction, and scanning electron microscopy. The reaction test for the selective oxidation of propylene to acrolein over Bi-molybdate catalysts was studied using a fixed-bed reactor system. In M/BM-series catalysts, $MoO_3$ was dispersed on ${\alpha}-Bi_2Mo_3O_{12}$, and the crystal structure of ${\alpha}-Bi_2Mo_3O_{12}$ remains unchanged by the presence of excess $MoO_3$. However the surface morphology and bulk structure of BM/M-series catalysts were altered probably because the precipitated $Bi(OH)_3$ reacted with $MoO_3$ during the calcination to form ${\alpha}-Bi_2Mo_3O_{12}$ phase. The results of propylene oxidation on both series catalysts showed that the reaction took place over the surface of ${\alpha}-Bi_2Mo_3O_{12}$ particle and the role of excess $MoO_3$ was to supply oxygen to ${\alpha}-Bi_2Mo_3O_{12}$. These increasing effects on activity were also observed in the mechanical mixtures of ${\alpha}-Bi_2Mo_3O_{12}$ and $MoO_3$.

  • PDF

Effect to the Discoloration of Lead Based Pigments by the Factors of Air Environment (납(Pb) 계열 안료의 변색에 관한 대기환경인자의 영향 연구)

  • Lee, Yu Jeong;Kim, Ji Won;Han, Min Su;Kang, Dai Ill
    • Journal of Conservation Science
    • /
    • v.34 no.2
    • /
    • pp.69-76
    • /
    • 2018
  • Lead-based pigments (Lead White, Massicot, and Red Lead) are known to cause discoloration easily in indoor air environments. This study was conducted to investigate the effect of representative indoor air environment factors ($O_2$, $CO_2$) on lead-based pigments. As a result of the experiment, almost all of the specimens showed changes of more than ${\Delta}E=5.0$ in their values of chromaticity under $O_2$ (99%, RH 99%) and $CO_2$ (36,000 ppm, RH 99%) environments. Scanning electron microscopy also showed that the pigment particles lose sharpness of the edge. Furthermore, under the degradation, the intensities of the characteristic peaks in the X-ray diffraction patterns were decreased, and Lead White, Massicot, and Red Lead exposed to $CO_2$ (36,000 ppm, RH 99%) were shown to include the new material cerussite ($PbCO_3$). In particular, Plattnerite ($PbO_2$) was identified on Massicot, and for white lead, the characteristic peaks disappeared and those of Cerussite were identified. It was confirmed that chemical change with discoloration can occur when these lead-based pigments are exposed to a high-humidity $CO_2$ environment.

Removal of Chlorinated Organic Compounds in Flue Gas by Activated Carbon Injection in a Semi-Drying Reactor (반건식 반응기에서의 활성탄 혼합주입에 의한 소각로 배가스중의 유기 염소계 화합물의 제거 공정 연구)

  • Choo, Changupp;Whang, Jaedong;Lee, Joyoung;Cho, Chulhoon;Shin, Byungchul
    • Clean Technology
    • /
    • v.6 no.2
    • /
    • pp.121-127
    • /
    • 2000
  • There are several kinds of hazardous materials in incinerator flue gas, such as particulate matter, acid gas, heavy metal, dioxin, etc. The activated carbon adsorption is considered as one of the methods removing dioxin from flue gas. Without any additional equipment and facilities, the activated carbon was mixed with lime and sprayed in the semi-drying reactor of an incinerator and filtered in the bag filter, and its efficiency of removing hazardous organic material was investigated. 1,2-dichlorobenzene (o-DCB) was used as a precursor material of dioxin and the effects of the activated carbon amount, the operating temperature of the reactor, and the atomizer r.p.m were measured and analyzed. Experimental results showed that the optimum outlet temperature of the reactor was $145^{\circ}C$ considering the performance of the bag filter, and the adsorption performance improved with the increase of the atomizer r.p.m. Also the performance of removing o-DCB in the bag filter is higher than of the semi-drying reactor.

  • PDF

The Magnetic Properties with the Variation of Sintering Temperature and Microwave Absorbing Characteristics of NiCoZn Ferrite Composite Prepared by Co-precipitation Method (공침법으로 제조한 NiCoZn Ferrite의 조성 및 소결온도에 따른 자기적 특성 및 전파흡수특성)

  • Kim, Moon-Suk;Min, Eui-Hong;Koh, Jae-Gui
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.3
    • /
    • pp.120-125
    • /
    • 2008
  • In this study, NiCoZn ferrites with the variation of sintering temperature and chemical composition were prepared by the coprecipitation. Microstructures Crystal structure of NiCoZn ferrites were analyzed by XRD and their electric magnetic characteristics were analyzed by LCR meter and their morphology observed by SEM. We identified that these powders have a typical NiCoZn spinel structure and nanoparticles average size of 40 nm. The impurity, the initial permeability and the Q factor value are the lowest of sintered NiCoZn ferrite at $1250^{\circ}C$. Also, we measured S-parameter for $(Ni_{0.4}Co_{0.1}Zn_{0.5})Fe_2O_4$ which showed a maximum reflection loss of -3.1 dB at 6 GHz for the 2 mm thick sample. From this result, we found that the NiCoZn ferrite can be used in ferrite microwave-absorbing application at a higher frequency region (> 6 GHz).

Direct Growth of CNT on Cu Foils for Conductivity Enhancement and Their Field Emission Property Characterization (전도성 향상을 위한 구리호일 위 CNT의 직접성장 및 전계방출 특성 평가)

  • Kim, J.J.;Lim, S.T.;Kim, G.H.;Jeong, G.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.2
    • /
    • pp.155-163
    • /
    • 2011
  • Carbon nanotubes (CNT) have been attracted much attention since they have been expected to be used in various areas by virtue of their outstanding physical, electrical, and chemical properties. In order to make full use of their prominent electric conductivity in some areas such as electron emission sources, device interconnects, and electrodes in energy storage devices, direct growth of CNT with vertical alignment is definitely beneficial issue because they can maintain mechanical stability and high conductivity at the interface between substrates. Here, we report direct growth of vertically aligned CNT (VCNT) on Cu foils using thermal chemical vapor deposition and characterize the field emission property of the VCNT. The VCNT's height was controlled by changing the growth temperature, growth time, and catalytic layer thickness. Optimum growth condition was found to be $800^{\circ}C$ for 20 min with acetylene and hydrogen mixtures on Fe catalytic layer of 1 nm thick. The diameter of VCNT grown was smaller than that of usual multi walled CNT. Based on the result of field emission characterization, we concluded that the VCNT on Cu foils can be useful in various potential applications where high conductivity through the interface between CNT and substrate is required.