• Title/Summary/Keyword: 격자 볼츠만기법

Search Result 12, Processing Time 0.025 seconds

Flow Noise Analysis of Ship Pipes using Lattice Boltzmann Method (격자볼츠만기법을 이용한 선박 파이프내 유동소음해석)

  • Beom-Jin Joe;Suk-Yoon Hong;Jee-Hun Song
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.512-519
    • /
    • 2023
  • Noise pollution poses significant challenges to human well-being and marine ecosystems. It is primarily caused by the flow around ships and marine installations, emphasizing the need for accurate noise evaluation of flow noise to ensure environmental safety. Existing flow noise analysis methods for underwater environments typically use a hybrid method combining computational fluid dynamics and Ffowcs Williams-Hawkings acoustic analogy. However, this approach has limitations, neglecting near-field effects such as reflection, scattering, and diffraction of sound waves. In this study, an alternative using direct method flow noise analysis via the lattice Boltzmann method (LBM) is incorporated. The LBM provides a more accurate representation of the underwater structural boundaries and acoustic wave effects. Despite challenges in underwater environments due to numerical instabilities, a novel DM-TS LBM collision operator has been developed for stable implementations for hydroacoustic applications. This expands the LBM's applicability to underwater structures. Validation through flow noise analysis in pipe orifice demonstrates the feasibility of near-field analysis, with experimental comparisons confirming the method's reliability in identifying main pressure peaks from flow noise. This supports the viability of near-field flow noise analysis using the LBM.

Flow Noise Analysis of Hull Appendages Using Lattice Boltzmann Method (격자 볼츠만 기법을 이용한 선체 부가물 유동소음해석)

  • Yeo, Sang-Jae;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.742-750
    • /
    • 2020
  • The flow noise generated by hull appendages is directly related to the performance of the sonar in terms of self-noise and induces a secondary noise source through interaction with the propeller and rudder. Thus, the noise in the near field should be analyzed accurately. However, the acoustic analogy method is an indirect method that is not used to simulate the propagation of an acoustic signal directly; therefore, diffraction, reflection, and scattering characteristics cannot be considered, and near-field analysis is limited. In this study, the propagation process of flow noise in water was directly simulated by using the lattice Boltzmann method. The lattice Boltzmann method could be used to analyze flow noise by simulating the collision and streaming processes of molecules, and it is suitable for noise analysis because of its compressibility, low dissipation rate, and low dispersion rate characteristics. The flow noise source was derived using Reynolds-averaged Navier-Stokes equations for the hull appendages, and the propagation process of the flow noise was directly simulated using the lattice Boltzmann method by applying the developed flow-acoustic boundary conditions. The derived results were compared with Ffowcs Williams-Hawkings results and hydrodynamic pressure results based on the receiver location to verify the usefulness of the lattice Boltzmann method within the near-field range in comparison with other techniques.

SIMULATION OF LID DRIVEN CAVITY FLOW WITH DIFFERENT ASPECT RATIOS BY MULTI-RELAXATION-TIME LATTICE BOLTZMANN METHOD (다중완화시간 격자 볼츠만기법을 이용한 다양한 종횡비의 리드드리븐 공동유동 수치해석연구)

  • Huang, Tingting;Song, Juhun;Lim, Hee-Chang
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.42-51
    • /
    • 2020
  • This study performs a numerical simulation of lid driven rectangular cavity flow with different aspect ratios of k = 0.5 to 4 under Reynolds 100, 1,000, 10,000 by using multi-relaxation time (MRT) Lattice Boltzmann Method (LBM). In order to achieve better convergence, well-posed boundary conditions in the domain should be defined such as no-slip condition on side and bottom solid wall surfaces and uniform horizontal velocity on the top of the cavity. This study focuses on the flow inside different shape of rectangular cavity with the aim to observe the effect of the Reynolds number and aspect ratio on the flow characteristics and primary/secondary vortex formation. In order to validate the study, the results have been compared with existing works. The result shows that the Reynolds number and the aspect ratio both has substantial effects on the flow inside the lid-driven rectangular cavity.

Stress Based Node Refill Model for Lattice-Boltzmann Method on Fluid-Structure Interaction Problems (격자 볼츠만 법의 유체 구조 연성해석 적용에 대한 응력 기반 격자 재생성 모델)

  • Shin, Jae-Ho;Lee, Sang-Hwan;Lee, Ju-Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.3
    • /
    • pp.12-18
    • /
    • 2012
  • The Lattice Boltzmann Method has developed for solving the Boltzmann equation in Cartesian domains containing immersed boundaries of arbitrary geometrical complexity moving with prescribed kinematics. When a immersed boundaries are sweeping the fixed fluid node, refilling the node information in a vicinity of fluid nodes is one of the important issues in Lattice Boltzmann Method. In this study, we propose a simple refill algorithm for the particle distribution function based on a proper velocity, density and strain rate to enhance accuracy and stability of the method. The refill scheme based on a asymptotic analysis of LBGK model has improved accuracy than interpolation schemes. The proposed scheme in this study is validated by the simulations of an impulsively started rotating circular cylinder to investigate adaptability for fluid-structure interaction (FSI) problem. This refill scheme has improved stability and accuracy especially at high Reynolds number region.

Relative Viscosity of Emulsions in Simple Shear Flow: Temperature, Shear Rate, and Interfacial Tension Dependence (전단유동에서 온도, 전단속도, 계면장력 변화에 따른 에멀전의 유변학적 특성)

  • Choi, Se Bin;Lee, Joon Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.677-682
    • /
    • 2015
  • We simulate an emulsion system under simple shear rates to analyze its rheological characteristics using the lattice Boltzmann method (LBM). We calculate the relative viscosity of an emulsion under a simple shear flow along with changes in temperature, shear rate, and surfactant concentration. The relative viscosity of emulsions decreased with an increase in temperature. We observed the shear-thinning phenomena, which is responsible for the inverse proportion between the shear rate and viscosity. An increase in the interfacial tension caused a decrease in the relative viscosity of the decane-in-water emulsion because the increased deformation caused by the decreased interfacial tension significantly influenced the wall shear stress.

Feasibility Study on the Two-dimensional Free Surface Simulation Using the Lattice-Boltzmann Method (Lattice Boltzmann Method를 이용한 2차원 자유수면 시뮬레이션 기법연구)

  • Jung, Rho-Taek
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.4
    • /
    • pp.273-280
    • /
    • 2012
  • The numerical simulation using the Lattice Boltzmann Method in the field of computational fluid dynamics becomes wider in the engineering applications because of its simplicity of update rules compared to the conventional Navier-Stokes solvers. Here, a two-dimensional D2Q9 LB model is numerically tested with a few new computational treatment on the free surface. The single relaxation time is applied under the gravitational field where applied only in the higher density fluid because of its big density difference. At the free surface, the reconstruction techniques in combination with boundary conditions is adopted in order to get some distribution function coming into the fluid site from the air one, and surface tension, early stable test for the gravitional field is considered in it. With the implementation of the gravitational profile, conserving the overall mass and grid dependency are observed during the calculations and freesurface advance track is well captured with an experiment.

DESIGN FOR AERODYNAMIC NOISE REDUCTION OF RAILWAY TRACTION MOTOR USING LBM (격자볼츠만기법을 이용한 전동차용 견인전동기 공력소음 저감 설계)

  • Kim, J.H.;Ki, H.C.;Byun, S.J.;Rho, J.H.
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.103-109
    • /
    • 2017
  • The aerodynamic noise reduction of railway traction motor is required to satisfy new enhanced Korean noise regulations for a train. This paper is the study result on a noise reduction of a railway traction motor using Lattice Boltzmann Method(LBM). To verify the reliability of numerical analysis, the noise performance of the base model evaluated using LBM, and calculated result was compared with the experimental data. In addition, main noise sources were selected to design parameters through analyzing the flow field of the base model. Based on the noise sources analysis result, a design improvement model of traction motor for this study was derived to reduce the noise. The performance of a design improvement model was evaluated by applying a validated numerical scheme. As a result, it was confirmed that the noise was reduced due to the suppression of the internal turbulent flow components.

An algebraic multigrids based prediction of a numerical solution of Poisson-Boltzmann equation for a generation of deep learning samples (딥러닝 샘플 생성을 위한 포아즌-볼츠만 방정식의 대수적 멀티그리드를 사용한 수치 예측)

  • Shin, Kwang-Seong;Jo, Gwanghyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.181-186
    • /
    • 2022
  • Poisson-Boltzmann equation (PBE) is used to model problems arising from various disciplinary including bio-pysics and colloid chemistry. Therefore, to predict a numerical solution of PBE is an important issue. The authors proposed deep learning based methods to solve PBE while the computational time to generate finite element method (FEM) solutions were bottlenecks of the algorithms. In this work, we shorten the generation time of FEM solutions in two directions. First, we experimentally find certain penalty parameter in a bilinear form. Second, we applied algebraic multigrids methods to the algebraic system so that condition number is bounded regardless of the meshsize. In conclusion, we have reduced computation times to solve algebraic systems for PBE. We expect that algebraic multigrids methods can be further employed in various disciplinary to generate deep learning samples.

DEVELOPMENT OF A 2-D GAS-KINETIC BGK SOLVER FOR CONTINUUM AND TRANSITIONAL FLOWS ON UNSTRUCTURED MESHES (비정렬 격자계에서 연속체 및 천이 영역 유동 해석을 위한 2차원 Gas-Kinetic BGK 해석자 개발)

  • Yang, T.H.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.49-57
    • /
    • 2014
  • In the present study, 2-D gas-kinetic flow solver on unstructured meshes was developed for flows from continuum to transitional regimes. The gas-kinetic BGK scheme is based on numerical solutions of the BGK simplification of the Boltzmann transport equation. In the initial reconstruction, the unstructured version of the linear interpolation is applied to compute left and right states along a cell interface. In the gas evolution step, the numerical fluxes are computed from the evaluation of the time-dependent gas distribution function around a cell interface. Two-dimensional compressible flow calculations were performed to verify the accuracy and robustness of the current gas-kinetic approach. Gas-kinetic BGK scheme was successfully applied to two-dimensional steady and unsteady flow simulations with strong contact discontinuities. Exemplary hypersonic viscous simulations have been conducted to analyze the performances of the gas-kinetic scheme. The computed results show fair agreement with other standard particle-based approaches for both continuum part and transitional part.

CURVED BOUNDARY TREATMENT OF THE LATTICE BOLTZMANN METHOD FOR SLIP FLOW SIMULATIONS (Slip flow 해석을 위한 격자볼츠만 방법의 곡면처리기법)

  • Jeong, Namgyun
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.77-84
    • /
    • 2014
  • The lattice Boltzmann (LB) method has been used to simulate rarefied gas flows in a micro-system as an alternative tool. However, previous results were mainly focused on a simple geometry with flat walls because the LB method is modeled on uniform Cartesian lattices. When previous boundary conditions for the microflows are applied to curved walls, the use of them requires approximation of the curved boundary by a series of stair steps, and introduces additional errors. For macroflows, no-slip curved wall boundary treatments have been developed remarkably in order to overcome these limits. However, the investigations for the slip curved wall boundary have rarely been performed for microflows. In this work, a curved boundary treatment of the LB method for a slip flow has been introduced. The results of the LB method for 2D microchannel and 3D microtube flows are in excellent agreement with the analytical solutions.