DOI QR코드

DOI QR Code

Flow Noise Analysis of Hull Appendages Using Lattice Boltzmann Method

격자 볼츠만 기법을 이용한 선체 부가물 유동소음해석

  • Yeo, Sang-Jae (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Hong, Suk-Yoon (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Song, Jee-Hun (Department of Naval Architecture and Ocean Engineering, Chonnam National University) ;
  • Kwon, Hyun-Wung (Department of Naval Architecture and Ocean Engineering, Koje College)
  • 여상재 (서울대학교 조선해양공학과) ;
  • 홍석윤 (서울대학교 조선해양공학과) ;
  • 송지훈 (전남대학교 조선해양공학과) ;
  • 권현웅 (거제대학교 조선해양공학과)
  • Received : 2020.08.19
  • Accepted : 2020.10.28
  • Published : 2020.10.31

Abstract

The flow noise generated by hull appendages is directly related to the performance of the sonar in terms of self-noise and induces a secondary noise source through interaction with the propeller and rudder. Thus, the noise in the near field should be analyzed accurately. However, the acoustic analogy method is an indirect method that is not used to simulate the propagation of an acoustic signal directly; therefore, diffraction, reflection, and scattering characteristics cannot be considered, and near-field analysis is limited. In this study, the propagation process of flow noise in water was directly simulated by using the lattice Boltzmann method. The lattice Boltzmann method could be used to analyze flow noise by simulating the collision and streaming processes of molecules, and it is suitable for noise analysis because of its compressibility, low dissipation rate, and low dispersion rate characteristics. The flow noise source was derived using Reynolds-averaged Navier-Stokes equations for the hull appendages, and the propagation process of the flow noise was directly simulated using the lattice Boltzmann method by applying the developed flow-acoustic boundary conditions. The derived results were compared with Ffowcs Williams-Hawkings results and hydrodynamic pressure results based on the receiver location to verify the usefulness of the lattice Boltzmann method within the near-field range in comparison with other techniques.

선체 부가물에서 발생하는 유동소음은 자체소음 관점에서 소나의 성능과 직결되고, 추진기 및 방향타와 상호작용을 통해 2차 소음원을 야기해 근접장 범위의 엄밀한 분석이 요구된다. 하지만 유동소음 해석에 적용되는 기존의 음향상사법은 음향 신호의 전파를 직접 모사하지 않는 간접법에 해당해 회절, 반사, 산란 특성을 고려할 수 없으며, 근접장 해석이 제한적이다. 본 연구에서는 격자 볼츠만 기법을 적용해 수중환경 유동소음의 전파과정을 직접 모사하였다. 격자 볼츠만 기법은 분자의 충돌과 흐름 과정을 통해 유동소음을 해석하는 기법으로, 압축성과 낮은 소산율, 낮은 분산율의 특성을 가지고 있어 소음해석에 적합하다. 선체 부가물 형상을 대상으로 RANS 해석을 통해 유동소음원을 도출하고, 유동-음향 경계면을 적용한 격자 볼츠만 기법으로 유동소음의 전파과정을 직접적으로 모사했다. 도출된 결과를 수음점의 위치에 따라 FW-H 결과 및 유체동압력 결과와 비교를 통해 근접장에서 타 기법 대비 격자 볼츠만 기법의 유용성을 확인했다.

Keywords

References

  1. Bhatnagar, P. L., E. P. Gross, and M. Krook(1954), A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Physical review, Vol. 94, No. 3, p. 511. https://doi.org/10.1103/PhysRev.94.511
  2. Bres, G. A., F. Perot, and D. Freed(2009), Properties of the lattice Boltzmann method for acoustics, 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference), p. 3395.
  3. Casalino, D., A. F. P. Ribeiro, E. Fares, and S. Nolting (2014), Lattice-Boltzmann aeroacoustic analysis of the LAGOON landing-gear configuration, AIAA Journal, Vol. 52, No. 6, pp. 1232-1248. https://doi.org/10.2514/1.J052365
  4. Casalino, D., A. Hazir, and A. Mann(2018), Turbofan broadband noise prediction using the Lattice Boltzmann Method, AIAA Journal, Vol. 56, No. 2, pp. 609-628. https://doi.org/10.2514/1.J055674
  5. Chen, H., S. Chen, and W. H. Matthaeus(1992). Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method, Physical Review A, Vol. 45, No. 8
  6. Choi, W. S., S. Y. Hong, J. H. Song, H. W. Kwon, and C. M. Jung(2014), Turbulent-induced Noise Around a Circular Cylinder using Permeable FW-H Method, Journal of the Korean Society of Marine Environment & Safety, Vol. 20, No. 6, pp. 752-759. https://doi.org/10.7837/kosomes.2014.20.6.752
  7. Choi, W. S., S. Y. Hong, J. H. Song, H. W. Kwon, J. H. Seo, and S. H. Rhee(2018), Analysis of Hull-Induced Flow Noise Characteristics for Wave-Piercing Hull forms, Journal of the Korean Society of Marine Environment & Safety, Vol. 24, No. 5, pp. 619-627. https://doi.org/10.7837/kosomes.2018.24.5.619
  8. Farassat, F. and J. Casper(2006), Towards an airframe noise prediction methodology: Survey of current approaches, 44th AIAA Aerospace Sciences Meeting and Exhibit, p. 210.
  9. Greenblatt, D., K. B. Paschal, C. S. Yao, J. Harris, N. W. Schaeffler, and A. E. Washburn(2006), Experimental investigation of separation control part 1: baseline and steady suction, AIAA Journal, Vol. 44, No. 12, pp. 2820-2830. https://doi.org/10.2514/1.13817
  10. Kam, E. W. S., R. M. C. So, and R. C. K. Leung(2007), Lattice Boltzman method simulation of aeroacoustics and nonreflecting boundary conditions, AIAA Journal, Vol. 45, No. 7, pp. 1703-1712. https://doi.org/10.2514/1.27632
  11. Marie, S., D. Ricot, and P. Sagaut(2009), Comparison between lattice Boltzmann method and Navier-Stokes high order schemes for computational aeroacoustics, Journal of Computational Physics, Vol. 228, No. 4, pp. 1056-1070. https://doi.org/10.1016/j.jcp.2008.10.021
  12. Najafi-Yazdi, A. and L. Mongeau(2012), An absorbing boundary condition for the lattice Boltzmann method based on the perfectly matched layer, Computers & fluids, Vol. 68, pp. 203-218. https://doi.org/10.1016/j.compfluid.2012.07.017
  13. Naughton, J. W., S. Viken, and D. Greenblatt(2006), Skin friction measurements on the NASA hump model, AIAA Journal, Vol. 44, No. 6, pp. 1255-1265. https://doi.org/10.2514/1.14192
  14. Rumsey, C. L., T. B. Gatski, W. L. Sellers III, V. N. Vasta, and S. A. Viken(2006), Summary of the 2004 computational fluid dynamics validation workshop on synthetic jets, AIAA Journal, Vol. 44, No. 2, pp. 194-207. https://doi.org/10.2514/1.12957
  15. Seol, H. S., J. C. Suh, and S. G. Lee(2005), Development of hybrid method for the prediction of underwater propeller noise, Journal of Sound and Vibration, Vol. 288, No. 1-2, pp. 345-360. https://doi.org/10.1016/j.jsv.2005.01.015
  16. Williams, J. E. F.(1969), Hydrodynamic noise, Annual Review of Fluid Mechanics, Vol. 1, No. 1, pp. 197-222. https://doi.org/10.1146/annurev.fl.01.010169.001213
  17. Yu, D., R. Mei, and W. Shyy(2005), Improved treatment of the open boundary in the method of lattice boltzmann equation: general description of the method, Progress in Computational Fluid Dynamics, an International Journal, Vol. 5, No. 1-2, pp. 3-12. https://doi.org/10.1504/PCFD.2005.005812