• Title/Summary/Keyword: 겔 강도

Search Result 227, Processing Time 0.032 seconds

Effect of Amylose and Amylopectin on the Texture of Mook (아밀로오스와 아밀로펙틴이 묵의 텍스쳐에 미치는 영향)

  • Kim, Hyang-Sook;Ahn, Seung-Yo
    • Korean Journal of Human Ecology
    • /
    • v.6 no.2
    • /
    • pp.157-166
    • /
    • 1997
  • Studies were carried out to investigate formation of Mook and its physical properties as well as the effects of amylose and amylopectin on the texture of Mook which were made from cowpea, mung bean, acorn, buckwheat, kidney bean, potato, rice, corn and wheat starches. Texture parameters of 10% starch gels were significantly different depending on the kind of starches. However, there were no significant differences in those of gels of starches commonly used for the preparation of mook. It was appeared that gel indices of cowpea, mung bean, acorn and buckwheat starch gels were in the range of 2.11-2.37, elastic limits were more than 0.60, gel strength coefficients were in the range of 700-1400 and brittlnesses were 0.23-0.62. It was also appeared that gel index and elastic limit were affected by amylopectin and gel strength coefficient and brittleness, by amylose, and that these two fractions were not able to form gel like Mook unless they were combined with proper proportion. Effect of addition of amylose from cereal and potato starches to cowpea starch or cowpea amylopectin were different from that of cowpea amylose. When cereal starches were supplemented by cowpea starches, gel strength coefficients and brittlenesses of their gels were increased, but gel indices and elastic limits were not changed. However, potato starch gel was improved to be similar to Mook with increasing of gel strength coefficient and appearance of brittleness by addition of cowpea amylose.

  • PDF

Tuning the Stiffness of Dermal Fibroblast-encapsulating Collagen Gel by Sequential Cross-linking (연속가교를 통한 피부 진피세포 담지 콜라겐 겔의 강도 제어)

  • Jung, Mun-Hee;Shin, Sung Gyu;Lim, Jun Woo;Han, Sa Ra;Kim, Hee-Jin;Jeong, Jae Hyun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.1
    • /
    • pp.23-29
    • /
    • 2018
  • In this study, sequential cross-linked collagen gels were successfully prepared with collagen, which is biomaterial, and acrylamide (AAm), which is a synthetic monomer. The elastic moduli (E) of cross-linked collagen gels were increased from 1.5 to 3.0 kPa by varying of AAm concentrations. In addition, human dermal fibroblasts were encapsulated into the porous pores introduced into the gels, and cell growth and behavior were investigated. Increasing E of the gels led to decreases in cell growth rate, while the cellular glycosaminoglycan (GAG) production level was elevated. Overall, the growth and cellular activity of skin cells were influenced by the extracellular matrix properties of the collagen gels. In conclusion, these results will be highly useful for designing reconstructive skins and various tissue engineering researches.

Characteristics Strength of Silicasol-cement Grout Material for Ground Reinforcement (지반보강용 실리카졸 약액의 강도특성에 대한 연구)

  • Kim, Hyunki;Kim, Younghun;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.9
    • /
    • pp.47-53
    • /
    • 2010
  • This study was made on the fact that the compressive strength characteristic of the recently developed alkali silica-sol chemical grout material was examined, whose grout material used for this study was designed to understand its strength property through the uniaxial compressive strength test(homo-gel, sand-gel), permeability test, deflection strength test, etc. In order to compare with the engineering characteristics regarding alkali silica-sol grout material and sodium silicate grout material. The uniaxial compressive strength of silica-sol grout material was identified to be increased more than 3~5 times than sodium silicate grout material at the early stage(within 72 hours). When comparing with the uniaxial compressive strengths of Sand-gel and Homo-gel at the material age of 28 days in case of silica-sol grouting material the strength of Sand-gel was measured to be about 1.3 times higher than Homo-gel. In case of silica-sol, it is assumed to have the property to exert high strength when it is actually grouted into the ground. As a result of permeability test it is judged that it is possible to apply the silica-sol to the site in the place requiring the water cut-off as the silica-sol. As a result of testing the strength at the material age of 28 days of grouting-use silica-sol showed more than 3 times' difference than the sodium silicate grouting material.

Development of Low-fat Meat Processing Technology Using Interactions between Meat Proteins and Hydrocolloids- I Optimization of Interactions between Meat Proteins and Hydrocolloids by Model Study (식육단백질과 친수성 콜로이드의 상호결합 특성을 이용한 저지방 육제품 제조기술 개발 - I 모델연구를 이용한 상호반응의 최적화)

  • Chin, Koo-Bok;Chung, Bo-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.3
    • /
    • pp.438-444
    • /
    • 2002
  • Interactions between meat proteins and hydrocolloids in a model system may play an important role for the improvement of textural properties in low-fat sausage mixtures. The objective of this study was to determine gel properties as affected by the type and level of hydrocolloid, various pH values of meat protein-hydrocolloid mixture before cooking, and internal cooking temperatures. The desirable heat-induced gels (HIGs) were formed at least pH values above 6.0. The addition of konjac flour (KF), kappa-carrageenan (CN) and locust bean gum (LBG) to extracted salt soluble proteins (2%) improved the gel strength with increased levels (0.5∼1.5%) and HIGs containing CN had the highest (p<0.05) gel strength. The increase of cooking temperature increased gel strength, depending on pH and type of hydrocolloid. However, the minimun internal cooking temperature to make viscoelastic HIGs was 70$^{\circ}C$. These results indicated that desirable HIGs were manufactured with each hydrocolloid concentration of 1% and minimum cooking temperature of 70$^{\circ}C$ with pH values higher than 6.0.

Analysis of Procollagen Biosynthesis of Functional Peptides Utilizing Stiffness Controlled Artificial Skin Dermis (강도가 제어된 인공피부 진피를 활용한 기능성 펩타이드의 프로콜라겐 생합성 분석)

  • Byun, Jina;Shin, Sung Gyu;Han, Sa Ra;Cho, Sung Woo;Lim, Jun Woo;Jeong, Jae Hyun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.4
    • /
    • pp.419-425
    • /
    • 2018
  • In this study, cross-linked collagen gels were successfully prepared with varying of elastic modulus from 0.7 to 17.7 kPa using a chemical cross-linker. Then, human dermal fibroblasts were encapsulated into the porous pores introduced into the gels, and cell growth and behavior were examined by gel's mechanical properties. Specifically, increasing elastic modulus of the gel led to decreases in procollagen synthesis from 47 to 32 ng. In addition, there could be optimum elastic modulus for procollagen production, when the gels were treated with adenosine. However, interestingly, this study discovered that the procollagen production level was not influenced by the elastic modulus of the gel for functional peptide. In conclusion, these results would be highly useful for designing reconstructed skins with varying of elastic modulus to examine functional materials in cosmetics.

Analysis of Number of Elastically Cross-links to Predict the Mechanical Properties of 3D Networked Poly(sodium acrylate) Gel (폴리아크릴산나트륨 3차원 네트워크 겔의 물성 예측을 위한 가교개수밀도 분석)

  • Kim, Sang Jin;Jeong, Hye-Won;Shin, Sung Gyu;Cho, Sung Woo;Jeong, Jae Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.300-308
    • /
    • 2021
  • In this study, 3D networked poly(sodium acrylate) gel was polymerized and controlled with the crosslinking environment to evaluate the mechanical properties and swelling behavior. In general, as the degree of crosslinking in a pre-gelled solution increases, the swelling ratio of the 3D networked gel decrease while the mechanical strength of the gel increases. Interestingly, this study demonstrates that the polymerization and crosslinking efficiency in gelling process could be depended on the crosslinking environment by evaluating the number of elastically cross-links in 3D networked gel. As a result, the number of elastically corss-links would be changed with 3.6 times as varying of the crosslinking environment while keeping the degree of crosslinking. It is expected that the 3D networked gel would be optimized as an effective absorbing agent for VOCs by using the gel evaluation method based on the number of elastically cross-links.

가열온도와 시간이 돈육수리미의 겔 특성에 미치는 영향

  • Gang, Geun-Ho;Jeong, Tae-Cheol;Lee, Jeong-Il;Mun, Sang-Hun;O, Seong-Hyeon;Ju, Seon-Tae;Park, Gu-Bu
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2004.05a
    • /
    • pp.242-245
    • /
    • 2004
  • 다양한 가열온도와 가열시간에 따른 겔의 특성을 조사한 결과, 돈육을 이용한 수리미유사물 제조시 $75^{\circ}C$에서 25분간 가열하는 것이 겔 강도와 경도, 색깔을 고려해 볼 때 가장 적절한 것으로 사료된다.

  • PDF

A Fundamental Study on The Expression of Initial Strength of Injection Materials for Steel Pipe Multi-Stage Method using Circulating Resources (순환자원을 활용한 강관다단공법용 주입재의 초기강도 발현에 대한 기초연구)

  • Sang-Huwon Song
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.557-562
    • /
    • 2023
  • This study reviewed the use of soil injection materials using circulating resources as injection materials for the steel pipe multi-stage construction method. The tests performed were homogel time and homogel compressive strength. The steel pipe multi-stage construction method is an auxiliary construction method for tunnels, and the expression of initial strength after construction is an important factor. The better the strength development in the initial stage, the more it can be used as an injection material suitable for the multi-stage steel pipe construction method. As a result of laboratory test, it was found that the homogel time of the injection material using circulating resources required more time than the mixing ratio using cement as the injection material. In addition, it was found that the initial strength curing time satisfying 2MPa was required for more than 24 hours. Therefore, it was confirmed that the injection material using recycled resources required a longer initial curing time than cement of the same mixing ratio.

Effect of the Radiation Crosslinking and Heating on the Heat Resistance of Polyvinyl Alcohol Hydrogels (PVA 하이드로겔의 내열특성에 방사선 가교와 열처리가 미치는 효과)

  • Park, Kyoung Ran;Nho, Young Chang
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.354-360
    • /
    • 2005
  • Polyvinyl alcohol (PVA) hydrogels were prepared by the irradiation and heating. Irradiation and heating processes were carried out to improve the heat resistance of PVA hydrogels at high temperature. The physical properties such as gel content, degree of swelling and gel strength for the synthesized hydrogels were examined. The structure variations were investigated using the following techniques: differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Gel content and gel strength of the hydrogels were higher when the two steps of irradiation followed by heat treatment were used rather than only with the irradiation. The hydrogels prepared by the irradiation and the two steps had good heat resistance at high temperature.

Gelation of Rapeseed Protein Induced with Microbial Transglutaminase (미생물성 Transglutaminase에 의한 유채단백질의 겔화)

  • Hyun, Eun-Hee;Kang, Yeung-Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.1262-1267
    • /
    • 1999
  • Optimum reaction conditions for gel formation of rapeseed, Brassica napus, protein catalyzed by microbial TGase(transglutaminase) were evaluated by measuring breaking strength and deformation of gel. The polymerization of the protein gel was ascertained by SDS-PAGE and content of GL crosslinking$[{\varepsilon}-({\gamma}-glutamyl)lysine]$. In the reaction between rapeseed protein and TGase at $45^{\circ}C$ for 60 min, the breaking strength and deformation of the gel was the maximum at the ratio of 1 : 40 of enzyme to substrate. 10%(w/v) of rapeseed protein concentrate was optimum for gel production. The maximum breaking strength and deformation was shown at $45^{\circ}C$ The breaking strength increased linearly up to 90 min of the reaction time and remained unchanged. The breaking strength and deformation by TGase treatment was pH dependent and pH 7 was optimum for 10% rapeseed protein solution. SDS-PAGE analysis indicated that new band of highmolecular polymers were formed by the enzyme reaction, with disappearing the original bands of rapeseed protein. According to HPLC analysis. the content of GL crosslinking was increased from 0 to $7.14\;{\mu}mol/g$ gel for 90 min of the reaction time.

  • PDF