• Title/Summary/Keyword: 건물 일체형 태양광 발전 시스템

Search Result 49, Processing Time 0.022 seconds

Performance Evaluation of a-Si BIPV System According to Transmittance Variation (투과율에 따른 비정질실리콘 BIPV 시스템 효율 평가)

  • Cha, Kwangseok;Lee, Byoungdoo;Kim, Kangsuk;Shin, Seungchul;Lee, Daewoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.60.1-60.1
    • /
    • 2010
  • 공동주택에서 태양광발전(PV)을 통한 세대 전기에너지 이용은 모듈 설치 면적의 제약으로 인해 전 세대를 대상으로 활용하기에 현실적으로 어려움이 있다. 특히 남향이나 남동, 남서향으로 위치한 거실 창호를 활용하는 경우에도 결정질 실리콘(crystalline silicon) 태양전지 셀로 인한 실내 음영문제 등으로 건물통합형 태양광발전(BIPV) 시스템의 가시성을 확보하는데 한계가 있다. 따라서 이런 문제점을 극복하고자 투광형 비정질실리콘(amorphous silicon) 태양전지를 이용한 발코니창호/커튼월 BIPV 시스템을 구축하고, 테스트베드를 통한 적용성 평가 검증을 수행하였다. 테스트베드는 KCC 중앙연구소 1층 외부 측창에 결정질 BIPV 모듈(A2PEAK 사(社), 최대 출력 210 Wp, W 2,000 mm ${\times}$ H 1,066 mm)과 10% 및 30% 투광형 비정질 BIPV 모듈(Sharp 사(社) See Through type, 최대 출력 135 Wp/123 Wp, W 1,930 mm ${\times}$ H 1,180 mm)을 각각 설치(남서 $30^{\circ}$, 수직 $90^{\circ}$)하여, 2009년 5월에서 8월 사이 4개월에 걸친 모니터링을 통해 실제 발전량 데이터를 확보, 시스템에 대한 분석을 진행하였다. 분석 결과, 설치용량당 일평균 발전량은 결정질형이 1.46 kWh/kWp, 10% 투광형은 1.10 kWh/kWp, 30% 투광형은 0.73 kWh/kWp을 나타내었다. 10% 투광형과 30% 투광형의 모듈 성능 차이는 크지 않으나 발전량에 있어서는 큰 차이를 보였고, 10% 투광형의 설치용량당 일평균 발전량은 경정질형의 75.2% 수준으로 투광형 비정질실리콘 BIPV 시스템의 창호 적용 가능성을 확인하였다. 특히 세대 거실 창호를 통한 가시성 확보는 기존 결정질 BIPV 창호의 단점을 개선하였다. 건자재 일체화로 구축된 가시성확보 BIPV시스템 창호는 단위 세대별 적용이 쉽고, 공동주택에서 PV 시스템의 설치면적을 극대화시키므로 향후 Zero Energy 공동주택 구축에도 활용성이 클 것으로 기대된다.

  • PDF

Analysis of the Correlation between Climatic Elements and Electricity Generation of Building Integrated Photo Voltaic on Gymnasium Building's Curtain Wall (체육관 커튼월에 설치된 건물일체형 태양광발전시스템의 발전량과 기후 요소 간의 상관성 분석)

  • Park, Kang-Hyun;Lee, Jeong-Hun;Kim, Su-Min;Park, Kyung-Won
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.1
    • /
    • pp.8-14
    • /
    • 2012
  • Concerning about global warming due to emission of greenhouse effect gas like C02 and depletion of fossil fuels have been spreading. So the need for solar energy utilization is increased. It is essentially important to make efforts to reduce usage of fossil energy resources. In this study, we analyzed the correlation between climatic elements and the photovoltaic power generation. Cloud cover of the correlation coefficient was 0.93. The order of the correlation coefficient was average temperatures, hours of sunshine duration of sunshine and the humidity. To accurately analyze of the degree of correlation for the photovoltaic power generation, additional research about climatic elements that show a high correlation is needed.

BIPV System Design to Enhance Electric Power Generation by Building up a Demonstration Mock-up and Analyzing Statistical Data (실증 목업의 구축 및 데이터의 통계적 분석을 통한 건물일체형 태양광 발전시스템의 전력발전 향상 설계)

  • Lee, Seung-Joon;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.587-599
    • /
    • 2018
  • In building-integrated photovoltaic (BIPV) systems, power generation functions are integrated into building functions by installing solar modules in combination with building materials. While this integration appears to be attractive, a design method is needed to achieve maximum power generation. Previously, the influence of the design elements on power generation was analyzed by computer simulations and demonstration tools. On the other hand, problems remain due to the inaccuracy of power generation analysis and relationship analysis, and limited demonstration. To solve this problem, this paper proposed the use of an extended demonstration mock-up. The mock-up was designed and constructed by implementing the design elements of the module types, installation angles, and direction. The actual operation data for one year were analyzed to evaluate the effects of the design elements on power generation. These results can be used to determine the feasibility of future BIPV systems and the optimal selection of system design elements.

A Study on the Design Methods of PV System for Apartment Building Application (공동주택의 태양광발전 시스템 적용을 위한 설계방법에 관한 연구)

  • Yi, So-Mi;Lee, Yong-Ho
    • New & Renewable Energy
    • /
    • v.4 no.4
    • /
    • pp.10-16
    • /
    • 2008
  • Nowaday, The Sustainable Development about global environment is the most important subject. In urban environment, a variety of the nature energy utilization such as the solar energy are the most efficient solution to solve this issue. One of these efficient solutions, a photovoltaic system using sunlight has been introduced to the building with an advantage such as cost-effective, safe for using and good for environment friendly in light with energy utilization. Recently, many of the apartment housings are built in domestic country. The apartment buildings have been constructed since early of 1970's. now apartment is taking over 50% out of entire housing in korea. The apartment housing applying to a photovoltaic system has been extensively studied in the foreign country but our county runs short. So, It was necessary to technical development of PV application which is suitable in Korean house culture. The objective of this study is to develop the building integrated PV application method for apartment building.

  • PDF

Analysis of Performance of Balcony Integrated PV System (발코니 일체형 태양광발전시스템의 발전성능 분석)

  • Kim, Hyun-Il;Kang, Gi-Hwan;Park, Kyung-Eun;So, Jung-Hoon;Yu, Gwon-Jong;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.1
    • /
    • pp.32-37
    • /
    • 2009
  • Photovoltaic(PV) permits the on-site production of electricity without concern for fuel supply or environmental adverse effects. The electrical power is produced without noise and little depletion of resources. So BIPV(Building-Integrated Photovoltaic) system have been increased around the world. Hereby the relative installation costs of the system will be relatively low compared to traditional installations of PV in high-rise buildings. This paper examined possibility of building integrated balcony PV system and analyzed both performance and problems of this system. The system is influenced by conditions such as irradiation, module temperature, shade and architectural component etc. If this BIPV system of 1.1kW is possible the natural ventilation in the summer case, the temperature of PV module decrease and then the efficiency of PV system increase generally. By the results, the annual averaged PR of BIPV system of cold facade type is about 74.7%.

Software Development on Power and Economic Analysis of Photovoltaic System for Building Application (건물용 태양광발전 시스템 성능 및 경제성 평가 프로그램 개발 연구)

  • Yoon, Jong-Ho;Shin, U-Cheul;Park, Jae-Wan
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • The aim of this study is to develop the photovoltaic simulation program, called SimPV, which can Predict hourly based power generation of various PV modules and conduct an intensive economic analysis with Korean situation. To establish the reliability of the PV simulation results, we adopt the PV calculation algorithm of TRNSYS program of which verification has already well approved. Extensive database for hourly weather data of Korean 16 cities, engineering data for PV system and building load profiles are established. Case study on the 2.5kW roof integrated PV system and economic analysis are presented with the developed program.

Comparative Analysis of the Change Tendency between Climatic Elements and Electricity Generation of Building Integrated Photo Voltaic in Winter (동절기 기후 요소와 수직면 건물일체형 태양광발전시스템 발전량의 상관관계 분석)

  • Park, Kang-Hyun;Kim, Su-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.8
    • /
    • pp.599-604
    • /
    • 2012
  • Most air pollution and smog are a result of the burning of fossil fuels. The use of fossil fuels also causes acid rain and global warming. So the need for solar energy utilization is increased. It is essentially important to make efforts to reduce usage of fossil energy resources. In this study, we analyzed the correlation between climatic elements(Cloud cover, Duration of sunshine, Temperature) and the photovoltaic power generation. Cloud cover of the correlation coefficient was 0.87. And duration of sunshine of the correlation coefficient was 0.93. The order of the correlation coefficient was duration of sunshine, cloud cover, temperature. To accurately analyze of the degree of correlation for the photovoltaic power generation, additional research about climatic elements that show a high correlation is needed.

A Study on the Power Performance Measurement of Transparent Thin-film PV Windows of BIPV Depending on the Inclined Angle (건물일체형 투명 PV복층창의 설치조건에 따른 단위출력당 발전특성 분석연구)

  • An, Young-Sub;Song, Jong-Hwa;Kim, Seok-Ge;Lee, Sung-Jin;Yoon, Jong-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.55-60
    • /
    • 2008
  • This study is on the analysis of power output of transparent thin-film PV windows which are integrated into the building envelope instead of traditional windows. 3 installation angles of vertical, horizontal and $30^{\circ}C$ inclination are investigated. To measure power output of PV windows, full scale mock-up house was designed and constructed. The power performance of PV window system was analyzed for horizontal angle, declination angle and vertical angle according to incline angle. Monitoring data are gathered from November 2006 to August 2007 and statistical analysis is performed to analysis a characteristics of power performance of transparent PV windows. Results show that annual power output of PV window with horizontal angle is 844.4kWh/kWp/year, declination angle 1,060kWh/kWp/year and vertical angle 431.6 kWh/kWp/year.

  • PDF

A Study on generation characteristics of building integrated Photovoltaic system (건물일체형 태양광발전 시스템의 발전성능 분석)

  • Park, Jae-Wan;Shin, U-Cheul;Kim, Dae-Gon;Yoon, Jong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.75-81
    • /
    • 2013
  • In this study, we analyze the performance characteristics of Building Integrated Photovoltaic (BIPV) system of K Research Building which was designed with the aim of zero carbon building. In addition, BIPV system, which is consist of three modules; G to G(Glass to Glass), G to T(Glass to Tedlar/Crystal) and Amorphous, has 116.2kWp of total capacity, and is applied to wall, window, atrium and pagora on roof. Therefore, in this paper, our research team analyzed BIPV yield and generation characteristic. BIPV yield was 112,589kWh a year from January 2012 to December 2012. And after applying PV panels on the building, the power from the best setting angle, $30^{\circ}$, of panel was compared. In addition, when the PV was attached practically on the building, the generation power was analyzed. BIPV modules in this study the relationship between module setting angle, type of modules ect. and power characteristics plans to identify.

The Development of Performance Evaluation Program of Building Integrated Photovoltaic System (건물일체형 태양광발전 시스템 성능평가 프로그램 개발)

  • Kim, Beob-Jeon;Park, Jae-Wan;Yoon, Jong-Ho;Shin, U-Cheul
    • KIEAE Journal
    • /
    • v.15 no.4
    • /
    • pp.85-90
    • /
    • 2015
  • Purpose: In design and planning Building Integrated Photovoltaic(BIPV) system can reduce cost by replacing building facade as construction material such as roofs, outer walls and windows as well as generating electricity. BIPV system should be applied at the early stage of architectural design. However, it is hard to decide whether using BIPV system or not for architects and builders who are not professional at BIPV system because performance of system is considerably influenced by types of module, installation position, installation methods and so on. It is also hard for experts because commercialized analytical program of photovoltaic systems is too complicated to use and domestic meteorological data is limited to partial areas. Therefore, we need evaluation program of BIPV system which can easily but accurately interpret generating performance and evaluate validity of BIPV system at the early stage of architectural design even for inexpert. Method: In this study, we collected meteorological data of domestic major region and analyzed generation characteristic of BIPV system by using PVsyst(commercialized software) in accordance with regions, types of solar module, place and methods of installation and so on. Based on this data, we developed performance evaluation program of BIPV system named BIPV-Pro, through multiple regression analysis and evaluated its validity. Result: When comparing predictive value of annual average PR and annual electricity production of BIPV-Pro an that of PVsyst, each of root mean square error was 0.01897 and 123.9.