• Title/Summary/Keyword: 건물구조체

Search Result 154, Processing Time 0.032 seconds

Static Experiment for the Seismic Performance of a 2 Story RC Shear Wall System (2층 RC 전단벽식 구조물의 내진성능에 대한 정적 실험)

  • Lee, Sang-Ho;Oh, Sang-Hoon;Hwang, Won-Tae;Lee, Kyung-Bo;Lee, Han-Seon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.55-65
    • /
    • 2010
  • The purpose of this experimental study is to evaluate the seismic performance of a 2 story RC shear wall system by the static reversal loading test. The lower 2 stories of the prototype structure were selected, and the specimens of this study were comprised of a T-type wall with an opening. The specimens were reduced to about 60% of the full scale size and were constructed to measure the result of the experimental variable regarding the existence of a lintel beam. To perform this study, the static repeated loading test was performed. According to the existence or absence of a lintel beam, the structural capacities and behavioral differences of the shear wall system were compared. The test results of this study showed that the specimen with a lintel beam underwent the seismic performance with an ultimate strength and ductility capacity better than the specimen without a lintel beam.

Seismic Characteristic Evaluation on Strip-type Damping Devices with Optimized Shape (최적 형상 스트립형 감쇠장치의 내진 특성 평가)

  • Hwang, Jung-Hyun;Ock, Jong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.26-37
    • /
    • 2019
  • This paper aims to investigate the seismic characteristics of strip-type damping devices possessing optimized shapes for the moment-resisting mechanism throughout analytical and experimental studies. Predicting equations for initial stiffness and yielding strength were introduced and compared with analytical results obtained from finite element analyses (FEAs) using commercial FEA program ABAQUS. In order for establishing predicting equations, two idealized processes were considered and both predicting equations showed that they could provide enough approximations for seismic applications in building structures. Throughout experimental studies, it was noted that structural uncertainties on mild steels, connection details and structural types linking damping devices with building structures could interrupt predicting structural behavior of the devices. Also, it was observed that shear stress concentrations should be considered if shear yielding type devices are applied into building structures. Nevertheless, it was shown that structural conservatism can be established using the predicting equations and seismic applications of the damping devices can enhance the seismic performance of building structures efficiently in the viewpoint that they have high resistance to low-cycle fatigue failures.

Fire Resistance Performance of Load Bearing Hybrid Panel Infilled with Light-weight Formed Mortar (복합스터드에 경량기포모르터를 충전한 내력벽체의 내화성능 비교연구)

  • Park, Keum Sung;Bae, Kyu Woong;Kang, Hyun Sik;Lim, Seo Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.109-116
    • /
    • 2007
  • The purpose of this paper is to evaluate the fire resistant performances of load-bearing wall using both composite and steel stud panel infilled with light-weight formed mortar under axial loading according to KS F 2257(1999). The minimum requirement of 2 hours fire resistant rating is needed for the residential and commercial buildings under the fire regulation of Korea. From test results, it is found that two types of specimen composed of the hybrid stud and steel stud panel filled with light-weight formed mortar fited in with the requirement of 2 hours fire resisting rate for the load-bearing wall. In the conclusions, the specimen with hybrid stud shows predominating fire-resistant performance on the adiabatic effects rather than that of the steel stud specimen.

Behavior of Reinforced Concrete Slabs Connected with Hinge Joints of Remodelling Buildings (리모델링 건물의 활절점에 의하여 연결된 철근콘크리트 바닥판의 거동 평가)

  • Sim Kyu-Kwan;Kim Sang-Sik;Lee Jung-Yoon;Choi kwang-Ho;Im Juhyeuk
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.761-768
    • /
    • 2005
  • Lately outmoded and functionally obsolete buildings constructed in 1960s and 1970s are often remodelled and restored. Even though there are not serious structural defects in the existing buildings, many old buildings have been reconstructed to improve residence quality or to extend residence area of the buildings. The experimental or theoretical research on plane expansion of RC apartments is quite scare. In this research, 12 specimens and 19 RC slabs connected by hinged joints were tested. The new slab was connected to the existing slab by hinge joints injecting dowel bars between two slabs. Main parameters of the slabs are types of the dowel bars (D13 and D19), spacing of the dowel bars (150mm, 300mm, and 450mm), and the locations of the steel bars in the existing slabs. The test results indicated that the shear strength of the RC test slabs having various types of dowel bars was about twice that calculated by the ACI 318-02 code. All slabs failed in concrete spatting and the dowel steel bars did not reach their yield strengths.

A Study on the Productivity Analysis of a Building Automation System (건물구조체(建物構造體) 자동화(自動化) 시스템의 생산성(生產性) 분석(分析)을 위한 기초적(基礎的) 연구(硏究))

  • Kim, Chang-Kyu;Song, In-Shick;Lee, Hyun-Soo;Lim, Sang-Chae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.111-115
    • /
    • 2008
  • The productivity is the one of the primary elements to evaluate the new systems performance for building construction along with the economic efficiency, the safety, and the quality improvement. At present the on-site construction automation systems(we will call it as Construction Factory or CF hereafter) is under the development by research group for construction automation of high-rise building. The system includes many sub-systems such as a robotic crane, a construction factory, bolting robots, a building material management system using RFID and so on. In this study we discuss and propose the method to evaluate for these hybrid on-site automation system fundamentally. In future we devise a framework of evaluation modules for the on-site building automation system on the basis of this discuss.

  • PDF

An Analysis iff the Mutural Relation between Sinkhole and 'Permanent under Draingage System' as A Measure of Non Floating (씽크홀(SINKHOLE)과 부력방지 대책인 '영구배수 공법'과의 상관관계)

  • Kwon, Hoi ku
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2017.11a
    • /
    • pp.257-259
    • /
    • 2017
  • 최근에 국내에서 입법된 "지하안전관리에 관한 특별법"의 지하안전영향평가 등에서 지하매설물 및 굴착공사 관리의 중요성을 강조하고 있지만, 아직까지는 지하를 개발함에 있어 지반의 안전과 관련된 사항은 미흡한 실정으로 도심지 지반침하( Sinkhole) 현상이 매년 증가하고 있다. 그리고 지반침하(Sinkhole)는 발생이 될 경우 인명피해는 물론 도로나 주변 건물들에 막대한 피해를 줄 수 있는 소지가 충분한 대상으로 사료됨에도 불구하고 이러한 현상을 건설현장에서 심각하게 받아들이는 분위기는 어느 곳에서도 감지되지 않는다. 다만 정부부처나 공공기관에서 국회차원의 지대한 관심에 부응하여 이에 대해 광범위한 연구와 조사에 막대한 예산을 투입하여 다방면에서 진행되고 있는 것으로 파악되고 있다. 또한 이러한 연구결과의 자료를 근거로 하여 지반침하 사고의 주요 원인을 조사해본 결과 상하수도관 손상과 무리한 인접굴착공사 및 대부분의 대형건축공사 현장에 채택되고 있는 부력방지 대책의 일환인 영구배수공법의 무분별한 적용을 들 수 있었다. 이러한 상황에서 그 중 비용과 난이도를 고려현장에서 용이하게 저감할 수 있는 방법인 영구배수공법을 선정하여 영구배수공법의 이론적 고찰과 공학적 타당성(구조체 부상방지 안전성 검토기준)을 연구하여 무분별한 영구배수공법 적용으로 지반침하(Sinkhole)가 발생하는 것을 막아 인명피해와 도로나 구조물의 안전성을 확보하고 나아가 영구배수공법 적용으로 항구적 발생하는 천문학적인 유지관리비의 절감이 목적이다.

  • PDF

Seismic Capacity of Non-seismic Designed RC Framed Building Retrofitted by Double I-type Metallic Damper (더블 I형 감쇠장치로 보강한 비내진 RC 골조의 내진성능 평가)

  • Hur, Moo-Won;Chun, Young-Soo;Hwang, Jae-Seung;Kim, Jong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.10-17
    • /
    • 2015
  • In this study, to examine seismic reinforcement effect of a school building constructed prior to application of seismic design, a Double I-type damper supported by wall was installed to perform comparative analysis on existing non-seismic designed RC frame. As a result of experiment, while non-seismic designed specimen showed rapid reduction in strength and brittle shear destruction as damages were focused on top and bottom of left and right columns, reinforced specimen showed hysteretic characteristics of a large ellipse with great energy absorption ability, exhibiting perfectly behavior with increased strength and stiffness from damper reinforcement. In addition, as a result of comparing stiffness reduction between the two specimens, specimen reinforced by shear wall type damper was effective in preventing stiffness reduction. Energy dissipation ability of specimen reinforced by Double I-type damper was about 3.5 times as high as energy dissipation ability of non-reinforced specimen. Such enhancement in energy dissipation ability is considered to be the result of improved strength and deformation.

Structural Behavior of Joints between the Hysteretic Steel Damper Connector and RC Wall Depending on Connection Details (강재판형 이력댐퍼 연결부재와 RC벽체의 접합상세에 따른 구조거동)

  • Kang, In-Seok;Hur, Moo-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.737-744
    • /
    • 2012
  • Hysteretic steel damper has been applied mainly to steel buildings. However, the usage in RC buildings is rapidly increasing recently. In order to apply the steel hysteretic damper in RC buildings, supporting elements of the damper should have sufficient strength and stiffness suitable for transferring damper forces to beams and walls. But due to the inevitable damage in reinforced concrete elements due to cracking, identification of the load transfer mechanism from damper to supporting element and hysteretic characteristics of the supporting element are extremely important in evaluating the damper behavior. Experiments were carried out on connection details between RC walls and supporting elements of the steel plate typed damper such as EaSy damper. The test results showed that fracture patterns of all specimens were almost identical except in the crack number and pattern associated with shear loading condition. Among the specimens, HD-3 shoed a well distributed cracks patterns along with good performance with respect to energy dissipation capacity, stiffness deterioration, and strength degradation.

Development of Automatic Construction System for Steel Frames of High-Rise Buildings (로보틱 크레인 기반 고층건물 구조체 시공 자동화 시스템 개발)

  • Doh, Nak-Ju;Park, Gwi-Tae;Kang, Kyung-In;Im, Myo-Teak;Hong, Dae-Hui;Park, Shin-Suk;Lee, Seoung-Kyou
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.84-89
    • /
    • 2007
  • In this paper, we introduce a new technique for automatic construction of steel frames in high-rise buildings. Basically, we combine advanced robotic technologies to building construction techniques. Four main topics will be developed such as: 1) Planning and synthesis of automatic construction system, 2) Development of construction factory system with climbing oil-pressured robot, 3) Core techniques for automatic assembly for steel frames, and 4) Intelligent resource management system. We expect that this new technique will increase the construction efficiency and will alleviate the manpower shortage problem in the aging society.

  • PDF

Estimation Formula for Shear Strength of RCS Beam-Column Joint (RCS 보-기둥 접합부의 전단강도 산정식 평가)

  • Chang, Kug-Kwan;Jeon, Choong-Geun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.1-9
    • /
    • 2015
  • This study is on the shear strength of the internal joints of RCS composite structure consisting of reinforced concrete column and steel beam. As a newly structure system, the composite system has been developed to fully utilize the advantages of reinforced concrete column and steel beam, which also include economic and practical joint detail. Nevertheless stress transfer mechanism and structural behavior of the joints had not been still clearly revealed and shown much difference from the proposed equation. In this study, by observing the crossing of reinforced concrete column through steel beam to the RCS structure beam type, thirty seven shear failure specimens were selected and applied to the 5 major equations which is used to calculate the shear strength of RCS joint. Through the regression analysis, modified equation which is more reliable and approximate results for shear strength of RCS joints was proposed.