• Title/Summary/Keyword: 거푸집공사기간

Search Result 27, Processing Time 0.021 seconds

거푸집공사의 재해 위험성 평가에 관한 연구

  • 오준호;고성석
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.05a
    • /
    • pp.109-114
    • /
    • 2002
  • 건설공사의 공종 중 거푸집공사는 전체공사기간의 대략 25%를 차지하고 있으며 공사비 비율은 일반적으로 전체공사비의 10~15%, 철근콘크리트공사비의 20~30%를 차지하고 있어 구조물의 안전성, 경제성 및 작업성과 품질관리에 중요한 역할을 한다. 또한 거푸집은 콘크리트가 양생되면 곧 해체되는 가설구조물로써 작업상에서 많은 위험요소를 포함하고 있으며 특히, 아파트공사의 경우 전체 재해발생의 17%로 가장 높은 비율을 차지하고 있다. 이와 같이 거푸집공사는 가장 우선적으로 관리하여야 할 위험공종이며 전체공기를 좌우하는 주공정으로서 이를 재해발생의 측면에서 제어하는 것이 안전관리에 있어서 가장 효율적이며 큰 효과를 나타낼 수 있는 것으로 생각된다.(중략)

  • PDF

Analysis on Stripping Time of Form of High-Early-Strength Concrete Incorporating Binder and Admixture (결합재 및 혼화제를 사용한 조강 콘크리트의 거푸집 탈형 시기 분석)

  • Jun, Myoung-Hoon;Bang, Jong-Dae;Lee, Bum-Sik;Park, Seong-Sik;Park, Ji-Young;Cho, Gun-Hee
    • Land and Housing Review
    • /
    • v.4 no.2
    • /
    • pp.193-200
    • /
    • 2013
  • Construction duration in construction project is an important factor which affects project cost. Advanced countries have reduced project cost by time shortening. Even though domestic construction companies have tried to time shortening, they yet failed to find systematic method for time shortening. Typically, duration of structural framework is affected by stripping time of form. Therefore, it need to shorten the stripping time of form for time shortening of structural framework. In this study, specimens of high-early-strength concrete were manufactured with variety conditions and compressive strength was tested. This study proposed stripping time of side and slab forms using test results. The stripping time of form was shortened when using high-early-strength concrete in structural framework by the test results. The result of this study will be useful for time shortening of structural framework.

Development of RCB Exterior Wall Form for Duration Reduction (공사기간 단축을 위한 원자로 건물 외벽 거푸집 개발)

  • Cho, Yerim;Shin, Yoonseok;Ko, Young-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.587-595
    • /
    • 2018
  • Countries that have been banned from building nuclear plants are becoming more tolerant in response to global warming and climate change. Thus, the construction of future nuclear plants will increase, and the competition will also intensify. A nuclear power plant has a long construction period compared with conventional construction projects. In order to gain a competitive advantage in nuclear power plant construction, the construction period must be decreased. Therefore, the purpose of this study is to develop an exterior wall form for a reactor containment building to reduce the construction time by increasing the height of the form. The structural safety, constructability, and economic feasibility were analyzed to assess the applicability of the proposed form. The proposed form was determined to be structurally safe. Furthermore, the construction period was shortened by reducing the duration of the construction units, and the total construction cost and interest were also reduced. Therefore, the proposed form could contribute to reducing the construction period for nuclear power plants.

Characteristics of Compressive Strength of Concrete due to Form Curing Condition (거푸집 양생 조건에 따른 콘크리트의 압축강도 특성)

  • Kim, Kyoungnam;Park, Sangyeol;Moon, Kyoungtae;Shim, Jaeyong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.19-28
    • /
    • 2018
  • The time for form removal is an important factor for ensuring the safety and economical efficiency of concrete structures, because it affects the quality, period, and cost of construction. Although local specifications suggest the form curing time, there is a problem of low quality of concrete due to early removing of form. This is because they do not fully understand effect of curing condition, and they want to shorten construction period in the field. Therefore, this research evaluates the effect of curing condition according to the time for form removal by testing specimen. As a result, the concrete compressive strength at the age of 28 days decreased about 40% in the condition of form removal after 12 hours, while the strength in the condition of form removal after 28 days decreased about 7%. Finally, this paper suggests an estimating equation for the concrete compressive strength due to the time for form removal considering various curing temperatures as equivalent ages. The proposed equation can be used in the field for evaluating the strength after form removal.

A Study on the Improvement of the Prefab Form Re-Bar Method (PF/R 공법의 문제점 분석을 통한 개선방안에 관한 연구)

  • Choi, Hyoung-Kyu;Suh, Jo-Seph;Park, Keun-Joon;Cho, Young-Jun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.377-380
    • /
    • 2007
  • Formwork is a very important work in the construction. Various research and development about formwork has been going on, many methods are developed. And the effort to reduce the cost has been progressed at oversea. And a lot of attempts have been in motion in domestic field. But the systematic researches to apply to field are scarced. So, some problems pointed out at the stage of application. Therefore through comparison analysis of other formwork problems are derived and it's solution were suggested in this study.

  • PDF

A Study on the Potential Risk Analysis for the Safety Management in the Formwork (거푸집공사 안전관리를 위한 잠재적 위험 분석에 관한 연구)

  • Shin, Yoon-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.2
    • /
    • pp.121-128
    • /
    • 2021
  • Due to the increase of size and complexity of construction project, the frequency of serious accidents in construction industry has been increased. Especially, the proportion of accidents in formwork of building construction site is very high, and many previous studies have been conducted to preventing them in the viewpoint of the diverse approaches. However, their effectiveness on accidents prevention was poor, and as a result, it is limited to consider the potential risks because many workers and managers tend not to be concerned with unsafe factors in formwork. Therefore, in this study, a realistic and proactive way for analyzing these potential risks was proposed in the manner of quantitatively assessing the potentials resulted from the unsafe factors in formwork. To verify the applicability of the proposed methodology, group survey was carried out, and the results were compared with those of the traditional importance-performance analysis(hereafter IPA) technique. Through the use of the proposed methodology, unsafe factors that were not found in the IPA but have potential risk were identified. Eventually, this study is expected to contribute to the proactive prevention of construction serious disaster accidents in formwork by enabling a more efficient management.

Quantified Evaluation on the Qualitative Criteria for the Selection of Appropriate Concrete Slab Form-works for Residential Buildings (델파이 기법을 이용한 정성적 공법 선정 요인의 정량적 평가 분석)

  • Lee, Kyung-Suk;Lee, Tae-Hee;Shin, Young-Keun;Kim, Tae-Hyung;Han, Seung-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.2
    • /
    • pp.136-144
    • /
    • 2011
  • The form-work operation of concrete structures is a major element determining the period and cost of construction projects. However, the selection of the appropriate form-work system is dependent on the experience of the site personnel only. In this paper, existing methods (Aluminum form, Sky deck) and new slab form-work methods (AFB: Aluminum panel Form with dropping Beam) were selected. Each method was estimated by means of Delphi techniques based on the qualitative analysis data. This paper suggests an evaluation methodology of slab form-work application in construction sites by calculating qualitative evaluation scores. The methodology finding quantified scores of qualitative criteria can be available to be applied to other construction operation evaluation methods.

A Study on the Development of a Non-supporting Form for Basement Wall and the Analysis on Its Economical Efficiency (지하옹벽 무지주 거푸집 개발 및 경제성 분석에 관한 연구)

  • Kim, Jae-Yeob;Lee, Sang-Woo;Sohn, Young-Jin;Kim, Gwang-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.6
    • /
    • pp.161-168
    • /
    • 2009
  • In an architectural construction, underground construction is a critical path forming a major part of the total construction period and cost, and particularly in big cities, its size has been increasing every year. A basement wall currently constructed in the field needs a large functional work force, and the construction is under progress by the Euroform and Soldier system, which is disadvantageous in terms of the construction period. Therefore, in this research, non-supporting forms which are applicable to the buildings construction were developed, based on the non-supporting forms partly used in some civil engineering works. In addition, the size of a form was assumed and its economical efficiency was compared to that of the Euroform and Soldier system which is used most in construction fields, and the results were analyzed. The study results showed that the construction cost of composite non-supporting forms was higher than that of the Euroform and Soldier system by about 8%, and the construction cost of non-composite non-supporting forms were lower than that of the Euroform and Soldier system by about 9%. However, in the case of composite non-supporting forms, the amount of concrete and reinforcing rods remarkably decreased in structural construction, so it has the effect of an economical cost reduction compared to the construction cost of existing walls by about 35%

Development of Quantitative Decision Support Model for Optimal Form-Work Based on Construction Site Type (건축 공사현장 유형별 최적 거푸집 공법선정을 위한 정량적 의사결정 지원모델 개발)

  • Kim, Oh-Hyung;Cha, Hee-Sung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.4
    • /
    • pp.56-68
    • /
    • 2019
  • An optimal selection of form-work is very important in the construction project in terms of construction cost and duration management. Also, it substantially affects the quality of the structure and the finishing work. However, in South Korea, the decision making on the selection of form-work has been based on the experience and intuition of construction practitioners not on the objective data or rational decision-making system. In order to solve the problem, several types of research on the selection of form-work has been processed. However, they did not consider the construction site condition, which is one of the most important factors for the selection of form-work. Thus, the objective of this study is developing the objective decision supporting system considering the site condition. This study provides the quantitative decision support model for optimal form-work based on construction site type. It is expected that the decision support model will help the practitioners decide optimal form-work based on the objective data. It will ameliorate the existing decision making process using experience and intuition. In addition, because the model considers site-conditions, it will provide more accurate and appropriate decision on the selection of an optimal form-work.

A study on the economical analysis of non-supporting form in basement wall cases (지하옹벽 무지주 거푸집 사례의 경제성 분석에 관한 연구)

  • Kim, Jae-Yeob;Kim, Gwang-Hee;Lee, Sang-Woo;Sohn, Young-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.111-117
    • /
    • 2009
  • Considering the entire critical path, underground works in construction projects occupy a large part of the total construction period, as well as a large part of the construction costs. Particularly in the downtown area, the scale of underground work has been increasing every year. Currently, underground retaining walls, which are built at construction sites, require many skilled workers, and the works are being undertaken by means of the Euroform+Soldier system, which is quite disadvantageous in terms of the construction period. In order to complement this, forms made of new materials and new construction methods have been developed. Now more than eyer, the shortening of construction periods and the reduction of construction costs is required. Considering this, in this study, the researcher has tried to compare the Euroform+Soldier system, which has been the system most frequently used on construction sites, to the non-supporting form system, which has been used on the sites of civil engineering work. The results of the research revealed that although the Euroform+Soldier system was advantageous from the perspective of material costs, it was disadvantageous in terms of labor costs. It is thought that an additional study on a method for reducing the material costs is required, so as to revitalize the application of non-supporting forms to the construction site.