• Title/Summary/Keyword: 거울면반사

Search Result 43, Processing Time 0.025 seconds

Effect of the Thermal Lensing on stable Region, Beam Waist and Astigmatic Compensation of Z-fold Cr4+ : YAG laser Cavity (Cr4+ : YAG 레이저에서 열 렌즈 효과에 따른 공진기의 안정영역과 빔 허리 및 비점수차의 보상)

  • Lee, Bong-Yeon
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.447-454
    • /
    • 2006
  • We obtained analytic solutions of boundary conditions to the stable region of Z-fold $Cr^{4+}$ : YAG laser cavity when the conditions are with and without thermal tensing effect. Also we investigated the influence of the thermal tensing effect on the stability of cavity, beam waist, and astigmatic compensation using aberration transformation matrices. The thermal tensing effect almost has no influence on the stable region of the cavity when the crystal is located in the middle of two concave mirrors and when the distances from the concave mirror to the reflecting mirror and the output coupler are the same. The beam waist, however, is affected more in a tangential plane than in a sagittal plane, and so it is difficult to have astigmatic compensation when the thermal tensing effect exists. This result means that the thermal tensing effect should be considered even for the Kerr-lens mode-locking.

Effect of Grating Phase in DFB Lasers with an Anti-reflection Coated Mirror (AR 코팅된 DFB 레이저에서 격자 위상의 영향)

  • Kwon, Kee-young;Ki, Jang-geun;Cho, Hyun-mook
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.463-468
    • /
    • 2021
  • In this paper, when a refractive index grating and a gain grating were simultaneously present in a DFB laser having a wavelength of 1.55 ㎛, a dielectric film coating was applied so that reflection did not occur on the right mirror surface, so that 𝜌r=0. In case of 𝛿L>0, the characteristics of the oscillation frequency and oscillation gain were analyzed. When the grating phase of the left mirror surface continues to decrease from 𝜋, the graph lines of each mode gradually shift to the left. In case of 𝜅L=10, the threshold gain of the oscillation mode is the lowest. In this case, the mode selectivity is relatively low. From 𝜅L=0.5 to 𝜅L=6, the mode selectivity and the frequency stability are excellent. In the case of DFB lasers with an anti-reflection coated mirror, the threshold gain of the oscillation mode increases but the mode selectivity is about twice as excellent, compared with DFB lasers of having two cleaved facets.

Evaluation of daylighting performance of bar-type mirror reflector system in tunnel (터널 적용 바형식 반사거울시스템의 채광성능 평가)

  • Lee, Beom-Seok;Joo, Jae-Sung;Jeong, In-Young;Kim, Min-Sung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.1
    • /
    • pp.93-105
    • /
    • 2012
  • The basic study was preceded for reducing maintenance and power cost of lighting fixture applying daylighting because most of the tunnel lighting depend on the artificial lighting. This study aims to evaluate the daylighting performance of daylighting performance of bar-type mirror reflector system in tunnel. Illuminance and luminance was measured. As a result of horizontal illuminance measurements, it was satisfied in tunnel recommended illuminance (KSA 3703) that total average was 1,170 lx increased 6.5 times more than this system was not used. Also, as a result of evaluating driver's glare on the opposite lane, glare did not occur and the luminance ratio was 3.01 which satisfies the luminance ratio standard 10.

A Comparative Analysis of Target Strength Estimated Models for Underwater Echo Signal Synthesis (수중 반사신호 합성을 위한 표적강도 예측모델 비교분석)

  • 김부일
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.93-103
    • /
    • 2001
  • A reflection signal in an active sonar using a high frequency is mainly formed of a specular reflection from the surface of an object along with several equivalent scatters inside, which are characterized by the spatial distribution of the highlight on the object. This study analyze the existing echo signal synthesis models eq, random distribution model, equivalent interval distribution model & MUTAHID(Modified Underwater TArget by HIlight Distribution) model for simulated target, and compare the characteristics of the reflected signal synthesis results for each model in various conditions. These highlight distribution models can be efficiently applied to the simulated target signals synthesis of various real systems requiring the echo signal synthesis on the underwater target.

  • PDF

Beam Profile Analysis of DFB Laser for High Speed Communications (고속 통신용 DFB 레이저의 빔 분포 해석)

  • Kwon, Keeyoung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.419-425
    • /
    • 2020
  • In this paper, when a refractive index grating and a gain grating are simultaneously present in a DFB (Distributed Feedback) laser for a 1.55 um wavelength with two mirror surfaces without an anti-reflective coating, an analysis program was developed to determine the beam distribution of the oscillation mode in the longitudinal direction. As the phases of the index and gain gratings on the mirror faces are varied, the lasing gain and the beam profiles |R(z)| and |S(z)| of the lasing mode with the emitted power ratio Pl/Pr are analyzed and examined in case of δL<0. In order to reduce the threshold current of a oscillation mode and enhance the frequency stability, κL should be greater than 8, regardless of the grating phase values at the mirror surface.

Effects of the Random Fluctuation in Grating Period on the Characteristics of DFB Lasers (회절격자 주기의 랜덤 변이가 DFB 레이저 특성에 미치는 영향)

  • Han, Jae-Woong;Kim, Sang-Bae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.8
    • /
    • pp.76-85
    • /
    • 2000
  • Effects of the random fluctuation in grating half-period have been studied by an effective index transfer matrix method in DFB lasers. The laser facets are assumed to be perfectly antireflection coated, and the period fluctuation is modeled as a Gaussian random variable. The random fluctuation breaks spectral symmetry in both uniform-grating and quarter-wavelength -shifted(QWS) DFB lasers, and decreases the effective coupling coefficient. This leads to increased average mirror loss of ${\pm}$1 modes and reduced stopband width in uniform grating DFB lasers, and degradation in the wavelength accuracy and the single mode stability in QWS-DFB lasers. Threshold gain difference decreases with increasing period fluctuation irrespective of grating coupling coefficient in QWS-DFB lasers, while spatial hole-burning effect is exacerbated or alleviated when the normalized coupling coefficient is lower and higher than 1.5, respectively.

  • PDF

Simulation and Examination for Beam Profile of DFB Laser (DFB 레이저의 빔 분포 시뮬레이션과 검정)

  • Kwon, Kee-Young;Ki, Jang-Geun
    • Journal of Software Assessment and Valuation
    • /
    • v.15 no.1
    • /
    • pp.71-78
    • /
    • 2019
  • Lasers for optical broadband communication systems should have excellent frequency selectivity and modal stability. DFB lasers have low lasing frequency shift during high speed current modulation. In this paper, we have developed a simulation software and analysed beam profiles of a lasing mode in longitudinal direction of an 1.55um DFB laser with two mirrors and without anti-reflection coatings, that have both an index- and gain-gratings. As the phases of the index and gain gratings on the mirror faces are varied, the beam profiles |R(z)| and |S(z)| of the lasing mode with the emitted power ratio Pl/pr are analysed and examined. In order to reduce the threshold current of a lasing mode and enhance the frequency stability, κL should be greater than 8, regardless of the grating phases on the mirror faces.

Wide FOV Panorama Image Acquisition Method (광각 파노라마 영상획득 방법)

  • Kim, Soon-Cheol;Yi, Soo-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2117-2122
    • /
    • 2015
  • Wide FOV(Field-of-View) is required to contain much more visual information in a single image. The wide FOV imaging system has many industrial applications such as surveillance, security, tele-conference, and mobile robots. In order to obtain a wide FOV panorama image, an imaging system with hyperbolic cylinder mirror is proposed in this paper. Because the horizontal FOV is more important than the vertical FOV in general, a hyperbolic cylinder mirror is designed in this paper, that has a hyperbolic curve in the horizontal surface and is the same as a planar mirror in the vertical axis. Imaging model of the proposed imaging system is presented by ray tracing method and the hyperbolic cylinder mirror is implemented. The imaging performance of wide FOV is verified by experiments in this paper. This imaging system is cost-effective and is possible to acquire a wide panorama image having 210 degree horizontal FOV in real-time without an extra image processing.

Design of Two Layer Depth-encoding Detector Module with SiPM for PET (SiPM을 사용한 두 층의 반응 깊이를 측정하는 양전자방출단층촬영기기의 검출기 모듈 설계)

  • Lee, Seung-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.319-324
    • /
    • 2019
  • A depth-encoding detector module with silicon photomultipliers(SiPMs) using two layers of scintillation crystal array was designed, and the position measurement capability was verified using DETECT2000. The depth of interaction of the crystal pixels with the gamma rays was tracked through the image acquired with the combination of surface treatment of the crystal pixels and reflectors. The bottom layer was treated as a reflector except for the optically coupled surfaces, and the crystals of top layer were optically coupled each other except for the outer surfaces so that the light sharing was made easier than the bottom layer. Flood images were obtained through the combination of specular reflectors and random reflectors, grounded and polished surfaces of crystal pixels, and the positions at which layer images were generated were measured and analyzed. The images were reconstructed using the Anger algorithm, whose the SiPM signals were reduced as the 16-channels to 4-channels. In the combination of the grounded surface and all reflectors, the depth positions were discriminated into two layers, whereas it was impossible to separate the two layers in the all polished surface combinations. Therefore, using the combination of grounded surface crystal pixels and reflectors could improve the spatial resolution at the outside of the field of view by measuring the depth position in preclinical positron emission tomography.

Phase-shifting diffraction grating interferometer for testing concave mirrors (오목 거울 측정용 위상천이 회절격자 간섭계)

  • 황태준;김승우
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.392-398
    • /
    • 2003
  • We present a novel concept of a phase-shifting diffraction-grating interferometer, which is intended for the optical testing of concave mirrors with high precision. The interferometer is configured with a single reflective diffraction grating, which performs multiple functions of beam splitting, beam recombination, and phase shifting. The reference and test wave fronts are generated by means of reflective diffraction at the focal plane of a microscope objective with large numerical aperture, which allows testing fast mirrors with low f-numbers. The fiber-optic confocal design is adopted for the microscope objective to focus a converging beam on the diffractive grating, which greatly reduces the alignment error between the focusing optics and the diffraction grating. Translating the grating provides phase shifting, which allows measurement of the figure errors of the test mirror to nanometer accuracy.