• Title/Summary/Keyword: 거리오차

Search Result 1,357, Processing Time 0.035 seconds

The Analysis of the fault location measurement error by Digital Relay (디지털 보호계전기의 고장점 표정에 대한 오차 분석)

  • Kim, Ho-Pyo;Park, Eung-Ju
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.312-314
    • /
    • 2002
  • 송전선로에 고장발생시 해당선로에 취부된 디지털 보호계전기의 보조기능인 거리표정의 신뢰도를 확인하기 위하여 보호계전기 제작사, 고장종류, 계전기 TYPE별로 거리 표정결과와 실제 고장점과의 오차 등에 대하여 세부적으로 통계 분석을 실시 하였다.

  • PDF

An Approach to Measuring Beacon Distance Using ANN (ANN을 사용한 비콘 거리측정 기법 연구)

  • Noh, Jiwoo;Kang, Seunghyeon;Kim, Taeyeong;Jang, Jihyun;Kim, Suntae;Lee, JeongHyu;Kang, YunGu;Park, YouBin;Choi, Eddy
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.242-243
    • /
    • 2018
  • 무선 통신기술이 발전함에 따라 위치기반 서비스에 대한 관심 또한 증가하고 있다. 그 중 저전력 블루투스 기술을 사용한 비콘(Beacon)은 실내 위치인식이 불가능한 GPS와 달리 실내에서도 측위가 가능하여 사용성이 주목 받고 있다. 그러나 비콘으로부터 수신되는 RSSI(Received Signal Strength Indication) 값은 여러 환경요소로부터 영향을 받기 때문에 RSSI값을 기반으로 한 거리측정이 실제거리와의 오차가 크게 나타난다. 이에 따른 문제를 해결하기 위한 기존의 연구들이 존재하지만 평균적으로 10m이하의 거리에서 2m의 오차를 나타내고 있다. 본 연구에서는 RSSI의 오차를 줄이기 위해 확장 칼만 필터와 신호 안정화 필터를 사용하여 Raw Data를 전처리 한 후 산출된 Cleaned Data를 기반으로 각 거리단위에 최적화된 ANN(Artificial Neural Network)모델을 생성하여 거리를 측정하는 기법을 제안한다.

Development and Measurement Error Compensation of Odometer System for Intelligent PIG (인텔리전트 피그를 위한 주행거리계의 개발 및 측정오차 보상)

  • Kim D.K.;Park S.S,;Cho S.H.;Yoo H.R.;Park D.J.;Koo S.J.;Rho Y.W.;Kho Y.T
    • Journal of the Korean Institute of Gas
    • /
    • v.6 no.1 s.17
    • /
    • pp.17-23
    • /
    • 2002
  • This paper introduces the spring-mounted odometer system which maintains the correct contact with the pipe wall and measures the distance along the pipe. The odometer wheel is designed to keep contact to the pipelines inner wall and to generate fifty rectangular pulses per one turn(159.5681mm) during pigging. The pipeline has the defects in various types such as buckles, winkles, cracks, dents, welding point and so on. Specially girth welding points which exist each 12m of the pipeline, much affects the operational environment of the odometer. The measurement error of the distance along the pipe is accumulated, for the measurement error of wheel's circumference and the pipeline inner environment. So, this paper proposes the method for the error compensation based on the analysis of the odometer's behavior around the girth welding point of pipe. The experimental results show that developed odometer system can be used for the intelligent pig with good performances.

  • PDF

Extended QEM for Surfaces Simplification Algorithm (메쉬 간략화를 위한 확장 QEM 알고리즘)

  • 김수균;김선정;김창헌
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.610-612
    • /
    • 2001
  • 본 논문은 이산 곡률을 확장된 QEM(Quadric Error Metrics)으로 변환한 새로운 메쉬 간략화 알고리즘을 제안한다. 이산 곡률이란 이산적인 표면으로 구성된 메쉬 표면의 곡률이며, 기하학 정보만을 이용하여 계산 가능하다. QEM은 간략화 오차를 평면과 한 점과의 거리 제곱의 합인 이차식으로 표현함으로써 빠른 간략화를 수행한다. 본 논문은 모서리 간략화 수행 시의 새로운 점과 주변 평면과의 거리 뿐만 아니라, 그 점에서의 이산 곡률을 계산한다. 즉, 간략화 오차에 거리와 곡률을 함께 고려하여 이차식으로 표현함으로써 빠르고 높은 품질의 간략화가 수행 가능하다.

  • PDF

Design and Estimation of Cordless Transmitter & Receiver for Measurement of Crane Moving Range (크레인의 이동거리 측정을 위한 무선 송수신기 설계 및 평가)

  • Kim, Tae-Soo;Oh, Inn-Yeal;Chun, Joong-Chang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.4
    • /
    • pp.808-814
    • /
    • 2007
  • In this paper, the measurement system of crane moving range is concerned with range recognition technology using phase and magnitude of radio wave. By the proposed technology, we design the radio transmitter and receiver and realize the measurement system, and save the data in disk that is earned from 900Mhz RF signal, middle frequency 450khz of analog signal. As a result of RF measurement, we got 9.3 dBm of RF output and 96 dBc@10khz of phase noise. Range information is earned the data through digital signal processing of IF signal. For the estimation of range measured, we analyze the difference between real range and measurement range, and also suggest the method to remove the measurement error using average processing and amplitude properties. A result is 0.12 and 0.00422 deviation in l0mn-30m and within 5m respectively, and then 2.4E-04 deviation in 4m by using compensation of level characteristics lately.

A Smoothing Method for Digital Curve by Iterative Averaging with Controllable Error (오차 제어가 가능한 반복적 평균에 의한 디지털 곡선의 스무딩 방법)

  • Lyu, Sung-Pil
    • Journal of KIISE
    • /
    • v.42 no.6
    • /
    • pp.769-780
    • /
    • 2015
  • Smoothing a digital curve by averaging its connected points is widely employed to minimize sharp changes of the curve that are generally introduced by noise. An appropriate degree of smoothing is critical since the area or features of the original shape can be distorted at a higher degree while the noise is insufficiently removed at a lower degree. In this paper, we provide a mathematical relationship between the parameters, such as the number of iterations, average distance between neighboring points, weighting factors for averaging and the moving distance of the point on the curve after smoothing. Based on these findings, we propose to control the smoothed curve such that its deviation is bounded particular error level as well as to significantly expedite smoothing for a pixel-based digital curve.

Observability Analysis of a Lever Arm Error for Velocity Matching in Transfer Alignment (전달정렬의 속도정합에 대한 지렛대 거리 오차의 가관측성 분석)

  • Yang, Cheol-Kwan;Shim, Duk-Sun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.276-284
    • /
    • 2013
  • This paper considers the transfer alignment in the inertial navigation system and the observability analysis is performed for velocity matching. The state variable of the Kalman filter is modeled including the lever arm error and the measurement equation is obtained. The SOM(Stripped Observability Matrix) method is used for the observability analysis for various maneuvering conditions of the vehicle, which gives the full state observability condition as a specific maneuver sequence of the vehicle. While the observability analysis of a lever arm effect in the existing papers is mainly performed by simulations, we performed it analytically by the observability analysis method. The analysis result is verified using the computer simulations.

Error Characteristics of Clamp-on Ultrasonic Flowmeters Depending on Location of Sensors and Downstream Straight Run of Bent Pipe (곡관후단의 직관거리와 센서위치에 따른 초음파유량계의 오차특성)

  • Lee, Dong-Keun;Cho, Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.8
    • /
    • pp.861-868
    • /
    • 2011
  • Flowmeters that measure the amount of fluid passing through conduits must kept accurate by comparison and the periodic calibration. The reference meters used are clamp-on meters that mount sensors on the outer wall of the pipe. They are called 1-path, 2-path or 4-path flowmeters depending on the number of sensors. We selected a flowmeter mainly used for K-water as test a flowmeter. We carried out experiments to find the intrinsic error of the flowmeter and errors in the downstream of a double bent pipe. The results show that there are the sensor locations that meet the tolerance. We suggested the angle of the sensor, the straight run from the downstream of the bent pipe and the number of sensors. So it is possible to improve the water treatment process and increase the accounted water rate by upgraded flow measurement technology.

An Improved Phase Estimation Method for AM Range Measurement System (진폭 변조 거리 측정 시스템에 적용 가능한 개선된 위상 추정 기법)

  • Kim, Dae-Joong;Oh, Taek-Hwan;Hwang, Sun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6C
    • /
    • pp.453-461
    • /
    • 2012
  • This paper proposes an improved phase estimation method for AM(Amplitude Modulation) range measurement system. The previous phase estimation method induces errors by Doppler shift of a moving target. The proposed method compensates phase estimation error through the ADC(Adaptive Doppler Correction) to take the Doppler shift, thus can improve distance measurement accuracy. When compared with the previous method through simulation results, the Doppler shift compensation and accuracy are improved by 94.7% and 50%, respectively. Target distance error in an acoustic tank is estimated to be 7.7cm, which confirms that the proposed method can be used to estimate the distance in the marine environment.

Evaluation of Position Error and Sensitivity for Ultrasonic Wave and Radio Frequency Based Localization System (초음파와 무선 통신파 기반 위치 인식 시스템의 위치 오차와 민감도 평가)

  • Shin, Dong-Hun;Lee, Yang-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.183-189
    • /
    • 2010
  • A localization system for indoor robots is an important technology for robot navigation in a building. Our localization system imports the GPS system and consists of more than 3 satellite beacons and a receiver. Each beacon emits both an ultrasonic wave and radio frequency. The receiver in the robot computes the distance from it to the beacon by measuring the flying time difference between ultrasonic wave and radio frequency. It then computes its position with the distance information from more than 3 beacons whose positions are known. However, the distance information includes errors caused from the ultrasonic sensors; we found it to be limited to within one period of a wave (${\pm}2\;cm$ tolerance). This paper presents a method for predicting the maximum position error due to distance information errors by using Taylor expansion and singular value decomposition (SVD). The paper also proposes a measuring parameter such as sensitivity to represent the accuracy of the indoor robot localization system in determining the robot's position with regards to the distance error.