DOI QR코드

DOI QR Code

A Smoothing Method for Digital Curve by Iterative Averaging with Controllable Error

오차 제어가 가능한 반복적 평균에 의한 디지털 곡선의 스무딩 방법

  • 류승필 (세명대학교 컴퓨터학부)
  • Received : 2015.03.17
  • Accepted : 2015.03.30
  • Published : 2015.06.15

Abstract

Smoothing a digital curve by averaging its connected points is widely employed to minimize sharp changes of the curve that are generally introduced by noise. An appropriate degree of smoothing is critical since the area or features of the original shape can be distorted at a higher degree while the noise is insufficiently removed at a lower degree. In this paper, we provide a mathematical relationship between the parameters, such as the number of iterations, average distance between neighboring points, weighting factors for averaging and the moving distance of the point on the curve after smoothing. Based on these findings, we propose to control the smoothed curve such that its deviation is bounded particular error level as well as to significantly expedite smoothing for a pixel-based digital curve.

디지털곡선에 있어서 잡음은 지역적으로 급격한 곡률 변화를 일으키므로 이를 없애거나 그 영향을 완화시키기 위해 평균을 이용한 스무딩 기법을 많이 사용한다. 그런데 스무딩은 그 정도가 지나치면 원래 형태의 특징을 왜곡시키거나, 이미지의 면적이 많이 감소될 수 있고 스무딩이 적으면 잡음이 충분히 제거되지 않는 문제점이 있다. 이 연구에서는 화소로 구성된 디지털 곡선에 대해서 반복적 평균 스무딩의 반복횟수, 이웃 점간의 거리, 평균을 위한 가중치와 스무딩 후의 점의 이동거리 등의 파라메터들 관계를 수학적으로 표현하고, 이 관계를 이용하여 스무딩 곡선을 입력곡선으로부터 허용오차 이내에 있도록 거리오차를 제어하는 방법과 스무딩 속도를 개선하는 방법을 제안한다.

Keywords

Acknowledgement

Supported by : 세명대학교

References

  1. C. H. Teh, R. T. Chin, On the detection of dominant points on digital curves, IEEE Trans. on PAMI, Vol. 11, No. 8, pp. 859-872, Aug. 1989. https://doi.org/10.1109/34.31447
  2. J. G. Dunham, "Optimum Uniform Piecewise Linear Approximation of Plannar curves," IEEE, Trans. on PAMI, Vol. PAMI-8, No. 1, pp. 67-75, Jan. 1986. https://doi.org/10.1109/TPAMI.1986.4767753
  3. M. Parvez, S. Mahmoud, "Polygonal approximation of digital planar curves through adaptive optimizations," Pattern Recognition Letters, Vol. 31, pp. 1997-2005, 2010. https://doi.org/10.1016/j.patrec.2010.06.007
  4. A. Poyato, F. Cuevas, R. Carnicer, R. Salinas, "Polygonal approximation of digital planar curves through break point suppression," Pattern Recognition, Vol. 43, pp. 14-25, 2010. https://doi.org/10.1016/j.patcog.2009.06.010
  5. J. Horng, "An adaptive smoothing approach for fitting digital planar curves with line segments and circular arcs," Pattern Recognition Letters, Vol. 24, pp. 565-577, 2003. https://doi.org/10.1016/S0167-8655(02)00277-5
  6. D. Burghardt, "Controlled Line Smoothing by Snakes," GeoInformatica, Vol. 9, No. 3, pp. 237-252, 2005. https://doi.org/10.1007/s10707-005-1283-3
  7. D. Lowe, "Organization of smooth image curves at multiple scales," International Journal of Computer Vision, Vol. 3, pp. 119-130, 1989. https://doi.org/10.1007/BF00126428
  8. G. Taubin, "Curve and surface smoothing without shrinkage," Proc. IEEE International Conference on Computer Vision, pp. 852-857, 1995.
  9. J. Oliensis, "Local reproducible smoothing without shrinkage," IEEE Trans. on PAMI, Vol. 15, No. 3, pp. 307-312, Mar. 1993. https://doi.org/10.1109/34.204914
  10. G. Sapiro and A. Tannenbaum, "Area and length preserving geometric invariant scale-spaces," IEEE Trans. on PAMI, Vol. 17, No. 1, pp. 67-72, Jan. 1995. https://doi.org/10.1109/34.368150
  11. M. D. Wheeler and K. Ikeuchi, "Iterative smoothed residuals: A lowpass filter for smoothing with controlled shrinkage," IEEE Trans. on PAMI, Vol. 18, No. 3, pp. 334-337, Mar. 1996. https://doi.org/10.1109/34.485562
  12. A. P. Witkin, "Scale-space filtering," Proc. International Joint Conference on Artificial Intelligence, Karlsruhe, West Germany, pp. 1019-1022, 1983.
  13. A. L. Yuille and T. Poggio, "Scaling theorems for zero-crossings," IEEE Trans. on PAMI, Vol. 8, pp. 15-25, Jan. 1986.
  14. A. Bengtsson and J. Eklundh, "Shape Representation by Multiscale Contour Approximation," IEEE Trans. on PAMI, Vol. 13, No. 1, Jan. 1991.
  15. B. K. Ray and K. S. Ray, "Corner detection using iterative Gaussian smoothing with constant windows size," Pattern Recognition, Vol. 28, No. 11, pp. 1765-1781, 1995. https://doi.org/10.1016/0031-3203(95)00046-3
  16. V. Beau and M. Singer, "Reduced resolution and scale space for dominant feature detection in contours," Pattern Recognition, Vol. 34, No. 2, pp. 287-297, 2001. https://doi.org/10.1016/S0031-3203(99)00221-6
  17. X. Zhang, M. Lei, D.Yang, Y.Wang, and L. Ma, "Multi-scale curvature product for robust image corner detection in curvature scale space," Pattern Recognition Letter, Vol. 28, No. 5, pp. 545-554, 2007. https://doi.org/10.1016/j.patrec.2006.10.006
  18. C. Lopez-Molina, B. De Baets, H. Bustince, J. Sanz, E. Barrenechea, "Multiscale edge detection based on Gaussian smoothing and edge tracking," Knowledge-Based Systems, Vol. 44, pp. 101-111, 2013. https://doi.org/10.1016/j.knosys.2013.01.026
  19. R. Legault and C. Y. Suen, "Optimal local weighted averaging methods in contour smoothing," IEEE Trans. on PAMI, Vol. 19, No. 8, pp. 801-817, Aug. 1997. https://doi.org/10.1109/34.608276
  20. B. Zhong, and K. Ma, "On the convergence of planar curves under smoothing," IEEE Trans. on Image Processing, Vol. 19, No. 8, pp. 2171-2189, Aug. 2010. https://doi.org/10.1109/TIP.2010.2046807
  21. M. Mansouryar and A. Hedayati, "Smoothing via iterative averaging (SIA) a basic technique for line smoothing," International Journal of Computer & Electrical Engineering, Vol. 4, pp. 307-311, Jun. 2012.