• Title/Summary/Keyword: 거더

Search Result 901, Processing Time 0.042 seconds

Experimental Study for Ultimate Behavior of Steel Cable Stayed Bridge Under Construction (실험을 통한 시공 중 강사장교의 극한거동 연구)

  • Lee, Kee Sei;Kim, Seung Jun;Choi, Jun Ho;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.683-692
    • /
    • 2012
  • The girders of cable stayed bridge are subjected to not only the bending moments but also additional compressive axial forces due to the horizontal components of cable forces. Because of these axial forces, the stiffness of girder can be decreased, and this problem should be considered especially for under-construction model rather than the full model. Korean domestic design specification suggests the linear elastic eigen value analysis for the stability problem of cable stayed bridges. However, this method cannot be applied to the under construction model because various geometric nonlinear characteristics cannot be considered. Therefore, in this study, 3 models which are assumed to be constructed by balanced cantilever will be considered experimentally and analytically to analyze the behavior of steel cable stayed bridges.

Design of Longitudinal prestress of precast decks in twin-girder continuous composite bridges (강박스거더 교량의 프레임 형식 중간다이아프램의 설계)

  • Yoon, Dong Yong;An, Sung Hyun;Lee, Sung Chul
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.515-524
    • /
    • 2006
  • Cross-sectional distortions take place when steel box girders a re subjected to torsional moment, as a consequence of which distortional warping stresses are necessarily developed. Additional normal stresses due to the distortion are should be included at the design stage. The relative magnitude with respect to the maximum bending stress are kept less than the specific values, i.e., at 5~10%, by properly spaced intermediate diaphragms that could prevent the distortional deformation of the box girder. However, current design equations for the stiffness of intermediate diaphragms were derived based on BEF. In this study, the area required by the intermediate diaphragm members are investigated through three-dimensional finite element analyses. The results of the analyses indicate that the current equations give to conservative values for the intermediate diaphragm of box girder bridges. Finally, an improved equation for the area of the intermediate diaphragm is derived from a regression analysis from the finite element analysis results.

Numerical Evaluation of Lateral-Torsional Buckling Strength in I-section Plate Girder Bridges (I-단면 플레이트거더교의 횡비틀림 좌굴강도의 해석적 평가)

  • Park, Yong Myung;Hwang, Soon Young;Park, Jae Bong;Hwang, Min Oh;Choi, Byung H.
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.321-330
    • /
    • 2009
  • This paper presents numerical analysis results for the lateral-torsional buckling (LTB) strength of steel I-girder bridges. Current Korean and AASHTO design specifications for LTB consider the buckling strength of a single girder with both its ends constrained. The I-girder bridges are composed of more than one girder, and the girders are interconnected with intermediate cross-beams or cross-frames. Therefore, it should be required to evaluate the effects of cross-beam stiffness and the interactionof girders on LTB strength. It is also necessary to consider the effects of transverse web stiffeners on LTB strength. By considering these parameters, a series of four-girder systemswere numerically modeled using 3D shell elements to estimate the LTB strength while considering initial imperfections and residual stresses.

A Study on the Fatigue Design of Joint Detail of Vertical Stiffener in Two-Girder Bridge (2거더교의 수직보강재 연결상세부의 피로설계에 관한 연구)

  • Kwon, Soon Cheol;Kyung, Kab Soo;Park, Jin Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.93-103
    • /
    • 2009
  • Two-girder bridge is composed of primary members such as deck slab and main girder, and secondary member such as cross beam, vertical and horizontal stiffeners etc,. Two-girder bridge is prescribed as a non-redundant load path structure in the ASSHTO and the Korean Highway Bridge Design Code. Such structure is that if one girder is damaged, problems of function and safety of the bridge are caused. From the reasons, fatigue cracks in two-girder bridge can affect safety of the bridge seriously. Therefore, in this paper, fatigue evaluation was performed at connection parts of vertical stiffener and web with radius of curvature of scallop of vertical stiffener and thickness of web as variables. Such joint is known as a detail which has high possibility of fatigue crack in the bridge. Based upon the analytical results, preferable joint detail in terms of fatigue and simple empirical formula for fatigue evaluation of the detail were suggested.

Reliability Analysis Model for Deflection Limit State of Deteriorated Steel Girder Bridges (처짐한계상태함수를 이용한 노후 강거더 교량의 신뢰성해석 모델 구축)

  • Eom, Jun-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.47-53
    • /
    • 2014
  • The paper investigates the limit state of deflection for short and medium span steel girder bridges. Deflection depends on stiffness of steel girders and integrity of the reinforced concrete slab (composite action). Load and resistance parameters are treated as random variables. A probabilistic model is developed for prediction of the deflection. The structural performance can be affected by deterioration of components, in particular corrosion of steel girders. In addition, the creep of concrete can greatly influence the deflection of composite structures. Therefore, the statistical models for creep and corrosion of structural steel are incorporated in the model. Structures designed according to the AASHTO LRFD Code are considered. Load and resistance models are developed to account for time-variability of the parameters. Monte Carlo simulations are used to estimate the deflections and probabilities of serviceability failure. Different span lengths and girder spacing are considered for structures designed as moment-controlled and deflection-controlled. A summary of obtained results is presented.

Implementation of 3D Object Model considering Recycle-Design of PSC Box Girder (PSC 박스 거더의 Recycle-Design을 고려한 3차원 객체 모델 구현)

  • Cho, Sung-Hoon;Park, Jae-Guen;Lee, Heon-Min;Shin, Hyun-Mock
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.3
    • /
    • pp.325-330
    • /
    • 2010
  • In the fields of design within civil engineering, BIM based Utilization of 3D object model is still far from commercialization. In this paper, BIM based 3D object model is composed for PSC box girder, super structure of railway bridge. The basic unit of the model is part model. The part model is the minimum unit model. And it has hierarchy to reflect the characteristics of structures. Change orders of structural designer must be reflected quickly in the 3D object model. Repetitive change orders are occurred in actual construction process. To prepare that, we classified design variables to parameters. Change orders of structural designer can be reflected quickly in the 3D object model because those parameters are related with information of 3D object model. In this paper, we studied various benefits of BIM based design method with 3D object model in the fields of design within civil engineering, and proposed the efficient application method of 3D object model for PSC box girder.

A Study on Shear Strength Test for FRP Girder of Filled Concrete (콘크리트 충진 FRP 거더의 전단재하 실험에 관한 연구)

  • Kwak, Kae-Hwan;Jang, Hwa-Sup;Kim, Woo-Jong;Kim, Hoi-Ok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.365-373
    • /
    • 2008
  • Fiber Reinforced Polymer, FRP has a light weight, a high tensile strength based on design, non-electronic, non-magnetic, and rust-resistant feature, etc and many researches are being conducted recently on FRP in the construction area. Among them, GFRP (Glass Fiber Reinforced Polymer) is excellent in price competitiveness and is widely being used. However, since GFRP has a relative low modulus of elasticity and causes excessive deflection, the section must be large to be used as a structural component and an investigative review must be carried out in design to set the limit for deflection by the use load. Therefore, in order to solve the mentioned technical problems, this study suggested a section of a module form such that application of a large-scale section is possible. Also, to secure the low rigidity of FRP, this study developed a new FRP+ concrete composite girder form that confined the concrete. To identify the structural movement of the developed FRP+ concrete composite girder, shear strength test was carried out.

Monitoring of Long-Term Behavior of The Continuous IPC Girder Bridge (IPC거더 연속교의 장기거동 모니터링)

  • Lee, Hong-Woo;Ahn, Jeong-Seang;Kim, Kyoung-Won;Yu, Sang-Hui
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.349-352
    • /
    • 2008
  • IPC girder is more prestressed and has smaller sectional area than the conventional PSC-I type girder due to incremental prestressing along the construction process. The continuous IPC girder bridge may have problems in serviceability and stresses at internal supports because it is very flexible. In this paper, The long-term behavior of the continuous IPC girder bridge is studied through long-term structural analysis and monitoring the deflections. The long-term behavior is monitored right before the introduction of 2nd prestressing that is the construction process different from the conventional PSC-I type girder bridge. The total station of high-precision was used in measuring the deflections. According to the monitoring result so far, the continuous IPC girder bridges does not show remarkable long-term behavior like severe camber or deflection and the measured deflections are very similar to the results of long-term structural analysis.

  • PDF

Applicability Evaluation of Precast Deck to the Maglev Guideway System : Mock-Up Construction Test (프리캐스트 바닥판의 자기부상열차 가이드웨이 시스템 적용성 평가 : 모의 시공 실험)

  • Jin, Byeong-Moo;Kim, In-Gyu;Kim, Young-Jin;Oh, Hyung-Chul;Ma, Hyang-Wook;Lee, Yung-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.57-60
    • /
    • 2008
  • Maglev is a system that a train runs levitated above a rail. Therefore it is very important to maintain a constant levitation gap for achieving serviceability and ride comfort. This study is a cooperation research subject of the 3-1 subject, performance improvement of maglev track structures, of the Center for Urban Maglev Program in Korea, started in 2006. The aim of this study is development of rapid constructions of bridge superstructure for maglev. At present, precast deck is widely used because of its superiority to cast-in-place concrete on quality and the term of works. The research group suggested basic systems of maglev guideway with PSC-U type and trapezoidal open steel box type girder, and precast deck, cooperating with Korea Railroad Research Institute, the managing institute of the 3-1 subject. In this study, a mock-up consisted of girders, decks and rail was fabricated and test was performed for constructability, serviceability and maintenance evaluation of PSC U-type girder, precast deck, and new guide rail system.

  • PDF

Experimental Tests for the Evaluation of One-dimensional and Two-dimensional Acoustic Source Locations with 50m length of a PSC Box Girder (50m PSC박스거더를 이용한 1차원과 2차원 음원위치 산정 실험)

  • Youn, Seok-Goo;Lee, Changno
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.433-442
    • /
    • 2013
  • This paper presents experimental research work for the evaluation of one-dimensional and two-dimensional acoustic source locations with 50m length of a precast prestressed concrete box girder. Acoustic events are generated by the impacts of Schmidt Hammer and the impact signals are detected by acoustic emission sensors mounted on the concrete web surface of PSC box girder with the average spacing of 9.34m. Based on the amplitude of detected acoustic signals, considering the noises developed in PSC box girder bridges, the arrival times of acoustic signals are estimated by the first arrival times of 0Volt, 0.5Volt, and 1.0Volt amplitude in each signal. Using Least Square Method, the velocities and the source locations of acoustic signals are evaluated. Based on the test results, the spacing of AE sensors and the AE sensor networks are discussed to reduce the source location errors.