• Title/Summary/Keyword: 갤러킨 방법

Search Result 34, Processing Time 0.019 seconds

Formulation and Chatacteristics of the Element Free Galerkin Method (갤러킨 정식화를 사용한 무요소법의 구성과 그 특성)

  • 석병호;임장근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.1
    • /
    • pp.47-56
    • /
    • 1999
  • 최근 요소망의 구성없이 공학적인 문제의 해석이 가능한 무요소법이 많은 학자들에 의하여 제안되고 이에 관한 집중적인 연구가 이루어지고 있다. 본 연구에서는 갤러킨 정식화에 의한 무요소법을 고체역학적인 문제에 적용하여 이의 특성을 규명하고자 하였다. 특히 일반적으로 사용되고 있는 몇가지 가중 함수를 선정하여 이들이 해석결과에 미치는 특성과 절점 배치방법 및 가중 함수의 영향 영역 변화에 따른 해의 정확도 등을 서로 비교하고 검토하였다. 연구결과로 가중 함수의 형태와 영향 영역의 크기, 기정 함수의 차수와 절점 배치방법 등은 서로 상관관계를 갖고 해의 정확도에 크게 영향을 미침을 확인할 수 있었고 이의 적절한 선정은 무요소해석의 중요한 요건임을 알 수 있었다.

  • PDF

The Petrov-Galerkin Natural Element Method : II. Linear Elastostatic Analysis (페트로프-갤러킨 자연요소법 : II. 선형 정탄성 해석)

  • Cho, Jin-Rae;Lee, Hong-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.113-121
    • /
    • 2005
  • In order to resolve a common numerical integration inaccuracy of meshfree methods, we introduce an improved natural clement method called Petrov-Galerkin natural element method(PG-NEM). While Laplace basis function is being taken for the trial shape function, the test shape function in the present method is differently defined such that its support becomes a union of Delaunay triangles. This approach eliminates the inconsistency of tile support of integrand function with the regular integration domain, and which preserves both simplicity and accuracy in the numerical integration. In this paper, the validity of the PG-NEM is verified through the representative benchmark problems in 2-d linear elasticity. For the comparison, we also analyze the problems using the conventional Bubnov-Galerkin natural element method(BG-NEM) and constant strain finite clement method(CS-FEM). From the patch test and assessment on convergence rate, we can confirm the superiority of the proposed meshfree method.

The Derivation of Error Estimates with Various Shape Functions for Time Integration Using Finite Element Approach (유한요소 기법을 적용한 시간적분법에서 형상함수에 따른 오차추정치 유도)

  • 장인식;맹주원;김동호
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.187-196
    • /
    • 1998
  • 불연속 갤러킨 정식화에 기초를 둔 시간적분법에 대하여 시간을 변수로 한 유한요소적 접근법을 시도하였다. 단일 형상함수와 두 형상함수 정식화에 대해 각각 선형, 이차 형상함수를 적용하여 모두 네 종류의 시간적분법을 유도하였으며, 각 방법에 대하여 시간시텝의 증가에 따른 변위와 속도의 관계를 나타내는 증폭행렬을 계산하였다. 유도된 방법들의 성능을 평가하기 위하여 부하가 갑자기 변화는 진동 문제를 해석하고 변위의 오차를 비교하였다. 네 가지의 방법에 대하여 국부 오차 추정치를 개발하였으며, 오차 추정치의 정확도를 수치예를 이용하여 평가하였다. 단일 형상함수 정식화에서 이차 형상함수를 이용한 오차 추정치가 실제 국부오차를 잘 나타내었으며 유도된 오차 추정치는 시간간격제어 기법에서 시간간격의 크기를 결정하는 척도로 이용 가능하다.

  • PDF

A study on the analysis model of heat conduction using the Galerkin Method (갤러킨 유한요소해석 방법을 이용한 열전도 해석 모델 구축에 관한 연구)

  • Kang, Seung-Goo;Kim, Dong-Jun;Lee, Jae-Young;Harada, Kazunori;Han, Byung-Chan;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.337-340
    • /
    • 2012
  • 본 연구는 비선형 비정상 온도분포해석에 대하여 갤러킨 유한요소해석 방법을 응용하고 2차원 삼각형 요소를 사용하였다. 이에 대하여 실험값과 해석값을 비교한 결과 모든 실험체에서 0.96~1.03의 차이가 있었으며 10%의 오차 범위 안에 있었다.

  • PDF

Space-Time Finite Element Analysis of Transient Problem (동적 문제의 공간-시간 유한요소해석)

  • Kim, Chi-Kyung;Lim, Hong-Bin
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.201-206
    • /
    • 1993
  • A space-time finite element method was presented for time dependent problem. The method which treat both the space and time unformly were proposed and numerically tested. The weighted residual process was used to formulate a finite element method in a space-time domain based upon continuous Galerkin method. This method leads to a conditional stabie high-order accurate solver.

  • PDF

Development of meshfree particle Methods (무요소 계산법의 발전과 전개)

  • Lee, Jin-Ho
    • Journal for History of Mathematics
    • /
    • v.18 no.4
    • /
    • pp.49-66
    • /
    • 2005
  • Finite element Methods(FEM) have been the primary computational methodologies in science and engineering computations for more than half centuries. One of the main limitations of the finite element approximations is that they need mesh which is an artificial constraint, and they need remeshing to solve in some special problems. The advantages in meshfree Methods is to develop meshfree interpolant schemes that only depends on particles, so they relieve the burden of remeshing and successive mesh generation. In this paper we describe the development of meshfree particle Methods and introduce the numerical schemes for Smoothed Particle hydrodynamics, meshfree Galerkin Methods and meshfree point collocation mehtods. We discusse the advantages and the shortcomings of these Methods, also we verify the applicability and efficiency of Meshfree Particle Methods.

  • PDF

Application of Channel Routing Model by Taylor-Galerkin Finite Element Method -Modeling of Flow in Flood- (테일러-갤러킨 유한요소법에 의한 하도추적 모형의 적용 -홍수시 하천 유량 모의-)

  • Lee, Hae-Gyun
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.1
    • /
    • pp.404-410
    • /
    • 2011
  • For the simulation of one-dimensional unsteady flow, the Taylor-Galerkin finite element method was adopted to the discretization of the Saint Venant equation. The model was applied to the backwater problem in a single channel and the flood routing in dendritic channel networks. The numerical solutions were compared with previously published results of finite difference and finite element methods and good agreement was observed. The model solves the continuity and the momentum equations in a sequential manner and this leads to easy implementation. Since the final system of matrix is tri-diagonal with a few additional entry due to channel junctions, the tri-diagonal matrix solution algorithm can be used with minor modification. So it is fast and economical in terms of memory for storing matrices.

Modal Analysis and Experiment of a Simply-supported Beam with Non-uniform Cross Sections (불균일 단면을 갖는 단순지지 보의 모달해석 및 실험)

  • Kim, In-Woo;Ryu, Bong-Jo;Kim, Youngshik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8654-8664
    • /
    • 2015
  • Beam-type structures with non-uniform cross sections are widely used in mechanical, architectural, and civil engineering fields. This paper deals with dynamic characteristics and vibration problems. Governing equations are first derived by using local coordinates. Their solutions are then assumed by using Galerkin's mode summation method. Bisection method is also applied in solving the determinant of the matrix which can provide natural frequencies. Whereas finite element methods adopt admissible functions satisfying only geometric boundary condition, in this study we apply Galerkin's mode summation method which uses eigen-functions satisfying both governing equations and boundary conditions. Modal analysis and experimental tests are finally performed using simply-supported beams with four different non-uniform cross-sections. Our analytical results then show good agreement with experimental ones.

Finite Element Solution of Ordinary Differential Equation by the Discontinuous Galerkin Method (불연속 갤러킨 방법에 의한 상미분방정식의 유한요소해석)

  • 김지경
    • Computational Structural Engineering
    • /
    • v.6 no.4
    • /
    • pp.83-88
    • /
    • 1993
  • A time-discontinuous Galerkin method based upon using a finite element formulation in time has evolved. This method, working from the differential equation viewpoint, is different from those which have been generally used. They admit discontinuities with respect to the time variable at each time step. In particular, the elements can be chosen arbitrarily at each time step with no connection with the elements corresponding to the previous step. Interpolation functions and weighting functions are taken to be discontinuous across inter-element boundaries. These methods lead to a unconditional stable higher-order accurate ordinary differential equation solver.

  • PDF