• Title/Summary/Keyword: 강판콘크리트 벽체

Search Result 23, Processing Time 0.026 seconds

Evaluation of Buckling Strength of Surface Plates in Steel-Plate Concrete Walls with Studs and Tie-bars (스터드 및 타이바를 가진 강판콘크리트 벽체의 표면강판 좌굴강도 평가)

  • Koo, Jimo;Lee, Kyungkoo;Kim, Wonki;Lee, JongBo
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.3
    • /
    • pp.129-138
    • /
    • 2016
  • Buckling of surface plates is an important limit state in Steel-Plate Concrete (SC) walls under axial compression. The surface plates may be anchored to concrete using connectors of studs or tie-bars. In this paper, the effects of studs and tie-bars on buckling of surface plates were evaluated by conducting tests. Experiments have three types of connectors; all studs, all tie-bars, and the combination of studs and tie-bars. Also, experiments have the various ratios of stud or tie-bar spacing to surface plate thickness. The experimental investigation shows that the buckling shape and strength of the surface plate of SC wall with the combination of studs and tie-bars have good agreements with that of the surface plate of SC walls with all studs or all tie-bars.

Analysis of Compression Characteristics of the Steel Plate-Concrete Wall Structures with Openings (개구부가 있는 강판콘크리트 벽체의 압축특성 분석)

  • Choi, Byong-Jeong
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.245-256
    • /
    • 2012
  • The objective of this study is to investigate the effect of the openings on the structural behavior of SC walls. The test parameters were with or without the reinforcing of openings and sleeve thickness. The common failure showed that the crack in the concrete progressed with the plate's local buckling between the shear connectors. The failure of the openings showed that the vertical wall of the sleeve buckled toward the opening inside. The plate buckling load showed a similar value with or without the sleeve of the opening, respectively. However, the maximum compressive strength of the specimen without the opening was higher than that of specimen with the opening.

An Experimental Study on the Behavior of Steel Plate-Concrete Wall with Vertical Ribs (수직 보강된 SC 벽체의 거동에 대한 실험적 연구)

  • Lee, Seung Joon;Choi, Byong Jeong;Kim, Tae Kyoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.277-287
    • /
    • 2009
  • The objective of this study was to experimentally investigate the structural behavior of steel plate concrete walls with vertical ribs (SSC walls), to compare the experimental results with the currently applied evaluation equations, and to obtain information that would be useful in the development of design equations for SSC walls. SSC test specimens that were subjected to in plane shear forces and bending moments were fabricated and tested. The experimental results show that the effect of vertical ribs on the structural behavior of SSC walls may be neglected, and that the confinement effect of concrete on the steel plates on both sides of the walls was negligible. The comparison of the experimental results with the evaluation equations showed that the structural behavior of SSC walls under shear control is close to that of the evaluation equations, but that the behavior of SSC walls under larger bending moments is not very close to that of the evaluation equations. The current evaluation equations for USC walls may be applied to the design of SSC walls because the structural walls of nuclear power plants are not subjected to large in plane bending moments.

Experimental Study for Structural Behavior of Embed Plate into Concrete Subjected to Welding Heat Input (매입강판 용접열에 의한 고강도 콘크리트 접합부 구조성능 영향평가에 관한 실험적 연구)

  • Chung, Kyung Soo;Kim, Ki Myon;Kim, Do Hwan;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.569-578
    • /
    • 2013
  • In a super-tall building construction, thick and large-sized embed plates are usually used to connect mega structural steel members to RC core wall or columns by welding a gusset plate on the face of the embed plate with T-shape. A large amount of heat input accumulated by weld passes causes the plates to expand or deform. In addition, the temperature of concrete around the plates also could be increased. Consequently, cracks and spalls occur on the concrete surface. In this study, the effect of weld heat on embed plates and 80MPa high strength concrete is investigated by considering weld position (2G and 3G position), edge distance, concrete curing time, etc. Measured temperature of the embed plates was compared with the transient thermal analysis results. Finally, push-out tests were performed to verify and compare the shear studs capacity of the embed plate with design requirement. Test result shows that the shear capacity of the plate is reduced by 14%-19% due to the weld heat effect and increased as the concrete curing time is longer.

A Study on the Behavior of Wall-Support Joint of Steel Plate-Concrete Structure (SC(강판-콘크리트)구조 브라켓 접합부 거동에 관한 연구)

  • Kim, Woo Bum;Kim, Kang Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.377-385
    • /
    • 2004
  • An experimental and analytical study on the behavior of the wall-support joint in SC(steel plate-concrete) structure was performed. Nine full-scale specimens were tested with a horizontal monotonic load, all acting in the same plane, causing a uni-axial moment on the SC structure's wall-support beam joint. The main focus is to examine thenonlinear behavior and ultimate strength of the SC wall-support joint. The effects of parameters, such aslocation of support, thickness of the steel plate, and size of support, were studied. The yield strength and ultimate strength of the plate-concrete wall was defined by examining the load-deflection relationship, showing the tension membrane action.

Experimental Study on Double Skin Composite Walls Subjected to Cyclic Loading (주기하중을 받는 이중강판합성벽의 실험연구)

  • Eom, Tae Sung;Park, Hong Gun;Kim, Jin Ho;Chang, In Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.289-301
    • /
    • 2008
  • Double skin composite (DSC) wall is a structural wall that is filed with concrete between two steel plate skins connected by tie bars. This type of wall was developed to enhance the structural performance of wall, to reduce wall thickness, and to enhance constructibility, eliminating the use of formwork and re-bars. In this study, cyclic tests were performed to investigate the inelastic behavior and earthquake resistance of isolated and coupled DSC walls with rectangular and T-shapedcross-sections. The DSC walls showed stable cyclic behaviors, exhibiting excellent energy dissipation capacity. The te st specimens failed by the tensile fracture of welded joints at the wall base and coupling beam and by the severe local buckling of the steel plate. The deformation capacity of the walls varied with the connection details at the wall base and their cross-sectional shapes. The specimens with well-detailed connections at the wall base showed relatively god deformation capacity ranging from 2.0% to 3.7% drift ratio. The load-carrying capacities of the isolated and coupled wall specimens were evaluated considering their inelastic behavior. The results were compared with the test results.

Analytical Study for Performance Improvement of Studs for Steel Plate Concrete(SC) Walls subjected to Combined Loads (조합하중을 받는 강판 콘크리트(SC) 벽체에서 스터드의 성능개선을 위한 해석적 연구)

  • Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.108-116
    • /
    • 2015
  • This study analytically reviewed the behavior of Steel Plate Concrete(SC) walls subjected to combined loads of axial force, flexural moment, and shear force to investigate the effects of shape and arrangement spacing of studs on the behavior of SC walls. To perform it, 9 cases of finite element analyses considering the different shape and spacing of studs in SC wall were carried out. The results showed that, for SC walls combined steel plate and concrete according to the Design Code, the compressive strength is higher than the tensile strength. Compared results from the finite element analyses of SC walls subjected to combined loads with Design Code showed that all cases were higher than the design strength. For KEPIC SNG, the moment and shear force were not influenced by the axial force of 0.1 to 0.2 times axial strength, however, from the analyses, it was found that the values were decreased as the axial force is increased.

An Experimental Study on Retrofit Effect of Shear Wall with Opening Using Steel Bar or Steel Plate (강봉 및 강판을 이용한 개구부를 갖는 전단벽의 보강효과에 관한 실험 연구)

  • Choi, Youn-Cheul;Bae, Baek-Il;Choi, Chang-Sik;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.129-138
    • /
    • 2009
  • Recently, for more demands of the economical benefits and environmental conservation, many engineers prefer to choose remodeling. Artificial openings are often unavoidable to make house wider, which will degrade wall strength and stiffness by losing effective wall section that may cause the weakening of system capacity. In these cases the damaged shear walls need to be retrofitted by additional materials or members. In this research, four specimens were tested to investigate the capacity of the damaged wall and the retrofitted wall. The artificially damaged wall was prestressed by tendons to improve the shear capacity of the wall, and the other walls were retrofitted by adding steel plate at the surface for the same purpose. Consequently, these retrofitted walls had improved capacity and stiffness in both shear and flexure. Especially, the wall with steel plate showed ductile behavior after ultimate load and the prestressed wall had greater stiffness than the unstrengthened prototype wall.

Experimental Investigation of the Lateral Load Capacity and Strength Characteristics of a Steel Plate Concrete (SC) Shear Wall (비보강 강판콘크리트 전단벽의 횡하중 성능 및 강도특성에 대한 실험적 평가)

  • Cho, Sung-Gook;So, Gi-Hwan;Kim, Doo-Kie;Kwon, Min-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.23-32
    • /
    • 2012
  • Research on steel plate concrete (SC) structures for the modularization of nuclear power plants have been performed recently in Korea. In this study, the seismic capacity and stiffness characteristics of unstiffened SC shear walls under the effects of earthquakes were investigated through static pushover tests. Failure modes, sectional strength, and stiffness characteristics of SC structures under lateral loads were inspected by analyzing the experimental results. The strengths obtained by the experiments were also compared with those derived by the design code of the SC structures. One of the main failures of unstiffened SC shear walls was found to be the type of bending shear failure due to the debonding of the steel plate at the concrete interface. The ductility capacity of SC structures was also confirmed to be improved, which is considered to be a confining effect on steel plates in the longitudinal behavior of SC structures.

Analytical Study for Design of Shape and Arrangement Spacing of Studs in Steel Plate Concrete(SC) Wall subjected to Shear and Axial Forces (전단력과 축하중을 받는 강판 콘크리트(SC) 벽체에서 스터드의 형상과 배치간격의 설계를 위한 해석적 연구)

  • Cho, Sung-Gook;Lim, Jin-Sun;Jeong, Young-Do;Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.67-76
    • /
    • 2014
  • In this study, the behavior of Steel Plate Concrete (SC) walls subjected to shear and axial forces to investigate the effects of shape and arrangement spacing of studs on the design of SC walls was analytically reviewed. For this purpose, 9 cases of finite element analyses considering the different shape and spacing of studs in SC wall were performed. The results showed that the steel plate was yielded at the lower load than the second yielding shear force of the design skeleton curve when the spacing of stud is excessively far from each other. It is also found that the shape of the stud did not affect the shear behavior of SC wall but, the spacing influenced to its composite action. In this study, it was also proven that the inclined shaped stud resists more effectively to the bucking load than the general shaped stud in SC wall.