• Title/Summary/Keyword: 강인제어기법

Search Result 332, Processing Time 0.023 seconds

Design of the Flight Control Systems using the MIMO Quantitative Feedback Theory (MIMO QFT를 이용한 강인한 비행제어 시스템의 설계)

  • Kim, Min-Soo;Lee, Seung-Whan;Yun, Man-Soo;Chung, Chan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2005-2007
    • /
    • 2003
  • QFT이론은 플랜트의 변동을 고려하여 주파수영역에서 설계하는 제어기법으로 파라미터의 변화 및 외란에 강인한 제어기 설계에 적합한 방법이다. 비행 제어시스템은 다중 입력과 다중 출력을 갖는 시스템으로 내부 하중의 변화 등의 내부적인 파라미터의 변동이나 돌풍 등의 외란에 강인한 제어기의 설계를 요구받는다. 이러한 비행제어시스템에 MIMO QFT 설계방법을 적용하여 제어기를 설계하였는데, 강인한 제어기의 설계방법인 QFT에는 GA를 이용한 자동 loop-shaping 방법이 사용되었다.

  • PDF

Robust Slewing Control of A Flexible Space Structure using Sliding Surface (슬라이딩 평면을 이용한 유연우주비행체의 강인 선회제어)

  • Kim, Jin Hyeong;Hong, Chang Ho;Seok, Jin Yeong;Bang, Hyo Chung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.63-71
    • /
    • 2003
  • This paper presents a robust slewing control of a flexible space structure based on sliding surface design. A sliding surface is designed for a single-axis rest-to-rest slewing in view of target angle, target angular velocity, and root monent of the flexible appendage. In comparison with the Lypunov control law, both controllers guarantee the stability and command tracking capabilities for nominal system. It is also shown that the designed control law provides further robustness to internal/external uncertainties. Extending the results of a single-axis maneuver, a sliding mode control law was sought for an arbitrary three-axis maneuver. Quaternion was used to determine the attitude of a space structure and sliding surfaces were designed for each axis, thereby a robust control law was derived considering the coupling effects between each rotational axis during the maneuver. Several numerical examples were demonstrated to show the effectiveness of the designed control law.

Robust Position Control of DC Motor Using Neural Network Sliding Mode Controller (신경망 슬라이딩 모드 제어기를 이용한 직류 전동기의 강인한 위치제어)

  • 전정채;최석호;박왈서
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.4
    • /
    • pp.122-127
    • /
    • 1998
  • Robust control for DC motor is needed according to the highest precision of industrial automation. However, when a motor control system has an effect of load disturbance, it is very difficult to guarantee the robustness of control system. The sliding mode control has robustness, but the discontinuous control law in sliding mode control with robustness leads to undesirable chattering in practice. As a method solving this problem, in this paper, neural network sliding mod control method for motor control system is presented. The proposed controller effectively can eliminate load disturbance without chattering. The effectiveness of the control scheme is verified by simulation results.

  • PDF

Trajectory control of a manipulator by the decoupling sliding mode method. (비간섭 슬라이딩 모드 제어기법을 이용한 로봇 매니퓰레이터의 제어.)

  • Nam, Taek-Kun;Kim, Yong-Joo;Lee, Chang-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2375-2377
    • /
    • 2003
  • 본 논문에서는 2자유도를 가지는 평면형 로봇매니퓰레이터의 궤도제어에 슬라이딩모드 제어기법을 도입한 비 간섭 제어기법을 적용하였다. 따라서 종래의 선형구조해석에 근간을 둔 비 간섭제어와는 달리 파라미터 오차 및 비선형에 의한 영향을 억제할 수 있는 강인한 제어기 설계가 가능하며 매니퓰레이터의 궤도제어에 적용하여 제안한 제어기법의 유용성을 확인하였다.

  • PDF

Robust Stabilization of Discrete Singular Systems with Parameter Uncertainty and Controller Fragility (변수 불확실성과 제어기 악성을 가지는 이산 특이시스템의 강인 안정화)

  • Kim, Jong-Hae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.5
    • /
    • pp.1-7
    • /
    • 2008
  • This paper presents not only the robust stabilization technique but also robust non-fragile controller design method for discrete-time singular systems and static state feedback controller with multiplicative uncertainty. The condition for the existence of robust stabilization controller, the admissible controller design method, and the measure of non-fragility in controller are proposed via LMI(linear matrix inequality) approach. In order to get the maximum measure of non-fragility, the obtained sufficient condition can be rewritten as LMI optimization form in terms of transformed variable. Therefore, the presented robust non-fragile controller for discrete-time singular systems guarantees robust stability in spite of parameter uncertainty and controller fragility. Finally, a numerical example is given to show the validity of the design method.

Development of robust flocking control law for multiple UAVs using behavioral decentralized method (다수 무인기의 행위 기반 강인 군집비행 제어법칙 설계)

  • Shin, Jongho;Kim, Seungkeun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.10
    • /
    • pp.859-867
    • /
    • 2015
  • This study proposes a robust formation flight control technique of multiple unmanned aerial vehicles(UAVs) using behavior-based decentralized approach. The behavior-based decentralized method has various advantages because it utilizes information of neighboring UAVs only instead of information of whole UAVs in the formation maneuvering. The controllers in this paper are divided into two methods: first one is based on position and velocity of neighboring UAVs, and the other one is based on position of neighboring UAVs and passivity technique. The proposed controllers assure uniformly ultimate boundedness of closed-loops system under time varying bounded disturbances. Numerical simulations are performed to validate the effectiveness of the proposed method.

Design of Linear Induction Machine Drive and Robust Position Controller based on Integral Variable Structure Scheme for Automatic Picking System (자동피킹 시스템 구동용 선형 유도 모터 드라이브 설계 및 적분형 가변구조 제어 기반의 강인 위치 제어기 설계)

  • Choi, Jung-Hyun;Yoo, Dong Sang;Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.511-518
    • /
    • 2013
  • To implement an automatic picking system (APS) in distribution center with high precision and high dynamics, this paper presents a design of a linear induction motor (LIM) drive and robust position controller based on integral variable structure control (IVSC) scheme. The force disturbance as well as the mechanical parameter variation such as the mass and friction coefficient gives a direct influence on the position control performance of APS. To guarantee a robust control performance in the presence of such uncertainty, a robust position controller is designed. A Simulink library is developed for the LIM model from the state equation. Through this model and comparative simulation based on Matlab - Simulink, it is proved that the proposed scheme has a robust control nature and is most suitable for APS.

Intelligent Fuzzy Modeling and Robust Digital fuzzy Control for Level Control in the Steam Generator of a Nuclear Power Plant (원전 증기발생기의 수위제어를 위한 지능형 퍼지 모델링 및 강인한 디지털 퍼지 제어기 설계)

  • Joo, Young-Hoon;Cho, Kwang-Lae;Kim, Joo-Won;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.311-316
    • /
    • 2002
  • Difficulties of the level control in the steam generator are increased due to their nonlinear characteristics. Futhermore, parameter uncertainties of the steam generator is related with control performance and stability. The efficiency of digital conversion in control systems is proved in many recent researches. In order to solve this problem, this paper suggests robust digital fuzzy controller design methodologies of the steam generator which have unstable parameters. Takagi-Sugeno (TS) fuzzy model is used to construct a fuzzy model which has uncertainties in the steam generator. In designing procedure, intelligent digital redesign method is used to control the nonlinear system. This digital controller keeps the performance of the analog controller. Simulation examples are included for ensuring the proposed control method.

A Study on the Robustness of Differential Supervisory Controller From Servo Control System (서보 제어시스템에서 미분 관리제어기의 강인성에 관한 연구)

  • Park, Wal-Seo;Lee, Sung-Soo;Oh, Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.1
    • /
    • pp.112-115
    • /
    • 2003
  • Robust control for servo control system in needed according to the highest precision of industrial automation. However, when a servo control system has an effect of disturbance, it is very difficult to guarantee the robustness of control system. As a compensation method solving this problem in this paper, Hybrid control method of Main controller(PIU)-Differential Supervisory controller is presented. Main controller is operated as a feedback controller. Differential Supervisory controller as a assistant controller is operated when state in unstable disturbance. The robust control function of Differential Supervisory controller is demonstrated by Speed control of Motor.

Research for Thrust Distribution Method of DACS for Response to Pintle Actuating Failure (DACS 추진기관의 핀틀 구동장치 고장을 허용하는 추력 분배기법 연구)

  • Ki, Taeseok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.61-70
    • /
    • 2017
  • Robust thrust distribution method of solid DACS is researched. For the case of the system which has higher number of actuation nozzles than the degree of freedom of thrust to be controlled, the robust thrust allocation law which accommodate the abnormal operation is suggested. Assuming the situation that some nozzles are uncontrollable, the error between nozzle throat area command and response can be calculated. The error is used for realtime reshaping of weighting matrix. From the weighting effect, the nozzle which operated abnormally has low responsibility for the command then, the thrust error is reduced. The suggested algorithm is verified by the simulation of abnormal operation condition of DCS and ACS nozzle respectively.